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Abstract

Biological cells are usually operating in conditions char-
acterized by inter-cellular signalling and interaction, which
are supposed to strongly influence individual cell dynamics.
In this work we study the dynamics of interacting random
Boolean networks focusing on attractor properties and re-
sponse to perturbations. We observe that the properties of iso-
lated critical Boolean networks are substantially maintained
also in interaction settings, while interactions bias the dynam-
ics of chaotic and ordered networks towards that of critical
cells. The increase in attractors observed in multicellular sce-
narios, compared to single cells, allows us to hypothesize that
biological processes, such as ontogeny and cell differentia-
tion, leverage interactions to modulate individual and collec-
tive cell responses.

Introduction
“Large, randomly assembled nets of binary elements be-
have with simplicity, stability, and order. It seems unlikely
that Nature has made no use of such probable and reliable
systems, both to initiate evolution and protect its progeny”
writes Stuart ? in its first paper on Boolean networks,
which gave origin to a flourishing research area focusing on
Boolean models for genetic networks. An important per-
spective of a large part of those studies is the ensemble ap-
proach (?), aimed at investigating generic properties of cells
that can be matched by ensembles of parametrized models.
One of the most relevant and far-reaching conjecture origi-
nated from those studies is the so-called criticality hypoth-
esis, which states that systems in a dynamical regime be-
tween order and disorder are capable of optimally balanc-
ing robustness and adaptiveness during evolution, and reli-
ably reacting to external stimuli with a wide repertoire of
actions (?). In these last fifty years, a profusion of results
supporting the criticality hypothesis in biological systems
have been published (see e.g. (??????)). As stated by ?, we
have now accumulated enough evidence to consider this hy-
pothesis valid and there is no need for reconsidering it. Nev-
ertheless, there is still room for further investigations when
interacting cells are concerned, including tissues and multi-
cellular organisms. A natural question arises as to whether

a colony of interacting cells, a tissue or even a multicellular
organism, consists of atomically critical components from a
dynamic point of view or its criticality emerge as a whole as
a consequence of cell-cell interactions. Properties of inter-
acting random Boolean networks have been explored from
different perspectives. ? have studied attractor diversity of
interacting random Boolean networks arranged on a lattice.
By varying the degree of interaction, they found that low and
moderate interaction degrees produce new attractors in the
networks, while high interaction degrees reduce the number
of attractors. Furthermore, ? found that also information
transfer is maximized at moderate interaction degrees. The
response to perturbations in interacting critical Boolean net-
works has been also addressed (?), finding that interactions
may introduce more variability in the kinds of response. The
dynamics of coupled Boolean networks has been the subject
of a detailed study considering several experimental condi-
tions (?); notably, the authors report that when a high con-
nectivity degree network is connected to a low connectivity
one, the former shows a drop in the state change per cy-
cle, whereas the latter shows an opposite trend. Interesting
results have also been reported by ? who studied the pat-
terns created by interacting Boolean networks under differ-
ent signaling settings. They found that ordered networks are
able to produce as complex patterns as critical networks. ?
focused instead on the study of robustness and evolvability
upon genetic perturbations of interacting networks systems.
They found that critical RBNs exhibit the greater ability to
conserve existing attractors while at the same time creating
new ones at both the single cell level and at the level of
the interacting multicellular system. ? studied modular ran-
dom Boolean networks (MRBNs), which can be regarded as
a special instance of interacting Boolean network systems.
They showed that the presence of modules blocks the spread
of perturbations and makes MRBNs more robust than RBNs.
Furthermore, preliminary results on their dynamical regime
have shown that particular trade-offs between the number of
intramodular and intermodular connections favor criticality.

In this work we address the question as to how interact-
ing random Boolean networks change their dynamical fea-
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tures with respect to isolated ones. In particular we focus on
attractor properties and the response to perturbations. The
results of our experiments suggest that criticality not only
is maintained, but it seems to attract networks from ordered
and chaotic (disordered) regimes. This might a be a clue
for explaining why living systems are driven by evolution
towards criticality and are robustly settled on a dynamically
critical state. In this contribution we primarily define the
interaction model used in our experiments, which takes in-
spiration from cell-cell interactions such as direct signal-
ing (?). Subsequently, we describe the experimental setting
and present the results. The results and their implications are
discussed, and we conclude with an outlook to future work.

Interaction Model
Multicellular organisms have a higher level of complexity
than unicellular organisms, both structurally and dynami-
cally. The increase in complexity is accompanied by an in-
crease in the capacity, efficiency, adaptability and fault tol-
erance of the organism, but at the cost of the need for co-
ordination and, possibly, specialization of the different cells
that compose the organism. Coordination is mediated by the
interaction between cells, which makes interaction a crucial
component in the orchestration of the complex functions of
the multicellular organism (?).

In order to unravel the general principles that have
favored, on an evolutionary scale, the emergence of
multicellularity—and consequently highlighted the advan-
tages of cell-to-cell interactions—we propose a model of
interaction based on the coupling of cells represented by
Boolean networks.

Boolean networks (BNs) are discrete models of gene reg-
ulatory networks proposed by Kauffman in 1969 (?). A BN
can be mathematically described by a directed graph of N
nodes, in which each node represents a gene that can be in
one of two states: “on” or “off”. So, the state of the sys-
tem at a discrete time t is a tuple of N Booolean variables
(x1, . . . , xN ) whose evolution is determined by a Boolean
function fi(xi1 , . . . , xiKi

) where Ki is the number of inputs
of node i. In spite of their simplicity, they can capture im-
portant qualitative biological cell properties (??????????).

The types of basic cellular interaction models we study
are as follows:

Unidirectional In this interaction scheme, at least two
Boolean networks are involved. At each time step, the
values of a selected subset of nodes in one network are
a function of the values of a subset of nodes in the sec-
ond network. In this configuration, without losing gener-
ality, we can refer to the former networks as “receiving
networks” and the latter as “emitter networks”. Mathe-
matically, a receiving network node xr

i affected by the
interaction can be defined as xr

i = g(xe
j

∣∣ xe
j ∈ Xe),

where Xe is the set of nodes of the emitter network. In

short, we can point out that the dynamics of the receiving
network is partially steered by the emitter network, as it
is continuously perturbed by the dynamics of the emitter
network.

Bidirectional In this setup, the Boolean networks involved
simultaneously play the role of receiver and emitter, mu-
tually influencing each other’s dynamics. Thus, each net-
work will have (i) a defined subset of nodes whose dy-
namics will be determined by the values of some nodes in
another network and (ii) another subset of nodes that will
determine the values of the nodes of the other network.

Unidirectional and bidirectional interaction schemes ab-
stractly describe interactions mechanisms observed in bio-
logical cells. They can, in fact, summarize very different
dynamics within a cell that can be described at different lev-
els of abstraction, from the simplest receptor-ligand inter-
action to the most complex cellular physiological response
mediated by intracellular signaling cascades. While unidi-
rectional interactions are ubiquitous in biology and appear
at any level of biological organization, bidirectional inter-
actions are more frequent in more complex cellular systems,
examples of which can be found in the following works ???.

With the abstract representation in Figure ??, we present
the unidirectional interaction scheme and the mapping be-
tween Boolean networks and biological cells.

Experiments
In this section, we will first summarize the details of the
experimental setting, then the results obtained.

Experimental setting
As we are interested in discovering statistical features that
highlight the advantage of multicellularity over unicellular-
ity under the lens of evolution, we analyze the dynamics of
interacting random Boolean networks drawn from ensem-
bles of networks (?) generated with a number of incoming
nodes K = 3 for each RBN node. In addition, the parameter
p, which defines the probability of assigning the value 1 to
each entry in an RBN truth table, will take on the follow-
ing values {0.1, 0.21, 0.5} which, combined with K = 3,
allow us to obtain, statistically, sets of ordered, critical and
chaotic networks, respectively (?). We generated RBNs with
20 nodes.

Concerning the implementation of cell-cell interaction
schemes with RBNs, we conduct experiments by selecting a
number of interacting networks from the set {2, 3}, and refer
to the scenario where only one network is involved as an iso-
lated network. Since an isolated network has 20 nodes, we
replicate it—to produce an exact copy of its genotype—and
interconnect it with its clone to create an overall network of
40 nodes for scenarios that require two interacting networks.
Similarly, we iterate this process twice to obtain a network
with 60 nodes in the case of three interacting networks. For
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Figure 1: This figure explains the relationships between Boolean networks (BNs) and biological cells. The bottom layer,
i.e. the cell-cell interaction layer, represents the level at which interactions between cells occur, so in our framework, it is
the layer where the different models of interaction between Boolean networks that we present will be tested. Instead, the
layer above represents the space in which the dynamics of Boolean networks (isolated and interacting) is represented. In the
specific case reported, we can appreciate an increase in the number of attractors—and also in the related state space since the
overall composite network grows—as the number of interacting networks increases. (A) Unicellular system, experimental case
modeled with an isolated Boolean network. (B) Multicellular system composed of two interacting BNs with unidirectional
interaction. (C) Multicellular system of three interacting BNs with unidirectional interaction.

the states used as initial conditions for the simulation of the
BNs, we randomly generate a Boolean vector of size equal
to the number of nodes of the isolated BN. While for the rel-
ative cases of interacting networks, where the same network
is replicated x times, we juxtapose x times the exact copy
of the previously randomly generated vector. This process
is repeated 1000 times to obtain a number of data sufficient
to collect ensembles statistics. For each interaction model
(i.e., unidirectional and bidirectional), we choose a number
of connections from the set {1, 2, 3, 4}, where by “connec-
tions” we identify the number of non-overlapping nodes in-
volved in the interaction between the networks. We choose
to use the identity function to represent the type of infor-
mation processing applied to data received from the emitter
network. Consequently, in simulations involving a single
node, the activation function that determines its state at time
t will follow this scheme: xr

i (t) = xe
j(t), with i and j ran-

domly chosen without replacement in the respective node
sets available.

The study of the dynamical features of isolated networks
is of fundamental importance because they represent unicel-
lular systems. They provide a term of comparison for the
composition of interacting networks, which instead model
multicellular systems. Therefore, comparisons will be made

with isolated networks of the same size as the resulting sys-
tem; as an example, if the interacting networks are 3 and the
size of each is equal to 20 nodes, the isolated networks used
for comparison will have 60 nodes. So, isolated networks
used as a comparison term are ex-novo randomly generated
RBNs with a number of nodes corresponding to the sum of
nodes of interacting networks.

To begin to empirically address the scientific questions
raised above, we collect statistics over 100 samples for
each experimental configuration on the following quantita-
tive metrics for both isolated and interacting RBN ensem-
bles and for each configuration of parameters previously pre-
sented:

Basin entropy Basin entropy measures the classification
capacity of a dynamical system (?). Indeed, making a
parallel between a dynamical system and a classification
process (?), the attractors represent the prediction classes,
while their basins of attraction and especially the way they
partition the state space represent the classification func-
tion. We calculated the basin entropy of a network X with
a set of attractors A as the Shannon entropy of the normal-
ized basins sizes w: h(X) = −

∑
a∈A wa log2 wa. For

the basins sizes calculation, we do not consider the length
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of the attractors, but only the number of states flowing
into them.

No. of attractors Statistics about the number of attractors
of a dynamical system is an important feature in biologi-
cal modeling since attractors, or sets of attractors (?), usu-
ally represent cell types (????).

Derrida analysis In its one-step version, the Derrida pa-
rameter λ provides a characterization of the dynamical
regime of a Boolean network by measuring the average
level of propagation of a perturbation after one simulation
step. Statistically, λ > 1 in chaotic networks, λ < 1 in
ordered networks λ = 1 in critical networks. To calculate
the Derrida value of a single state, we make a copy of it
and perturb it with a logical negation applied to the value
of a randomly chosen variable; we then perform a syn-
chronous update for both the original and the perturbed
state and finally measure the Hamming distance between
the two resulting states. We determine the average value
for each Boolean network by repeating this procedure for
1000 random states.

Lempel-Ziv complexity This metric is used to approxi-
mate the Kolmogorov complexity of a string of symbols
s, defined in terms of the shortest program that produces
s. As this measure cannot be effectively computed, it is
common to resort to approximations of it. We chose LZ
complexity to reckon the Kolmogorov complexity of the
attractors of a BN (the attractors are appended to obtain a
string of binary symbols). The LZ complexity metric (?)
is based on a lossless compression algorithm that scans a
given string s and splits it into words; it associates sym-
bols to prefixes and suffixes of the words composing s,
progressively introducing a new symbol when the com-
binations of previous ones cannot produce the incumbent
word. The number of symbols used to encode s is an es-
timate of the Kolmogorov complexity of s. Since the LZ
complexity provides an estimation of the compressibility
of a sequence of symbols (the LZ complexity is anticorre-
lated with compressibility, which is high if the sequence
contains repetitions), the higher is its value, the more di-
versified are the attractors.

Maximal attractor distance The maximum among the
distances between attractor pairs provides an estimation
of the spectrum range of stationary behaviors exhibited
by a BN. Among the possible distance metrics, we opted
for an information theoretic one, namely the normalized
compression distance (?). The rationale of this metric is
to compare the compression ratio of two individual set
of data (i.e. files) with the compression ratio of the jux-
taposition of the two sets of data. The more similar are
the two sets of data, the smaller the compression of the
compound object with respect to the sum of the compres-
sions of the individual objects. The normalized compres-

sion distance (NCD) between two objects A and B is de-
fined as: c(AB)−min{c(A),c(B)}

max{c(A),c(B)} , where c(X) is the size
of the compression of data object X and AB means the
compound of A and B. This metric has been computed
with the high quality data compressor bzip2, based on the
Burrows–Wheeler algorithm (?).

Results
The first analysis considers the number of attractors detected
in each configuration (see Figure ??). For this analysis, we
control in which attractor the dynamics relaxes for each of
the 1000 random initial states, without truncating any tra-
jectory. This implies that even for chaotic networks, char-
acterized by very long attractors, we waited for each sim-
ulation to end. Ordered networks usually present a lower
amount of attractors than critical networks. Likewise, our
critical networks present a lower amount of attractors than
chaotic ones. This pattern persists even in case of interact-
ing networks, indicating a common trend. Nevertheless, by
comparing isolated and interacting networks of the same to-
tal size, we can see that the number of attractors of the latter
greatly increases. Interestingly, the average and median val-
ues of some interacting critical networks configurations even
exceed that of chaotic isolated networks. Overall, the num-
ber of attractors seems to be also related to the number of
connections between interacting networks. Specifically, at-
tractors and connections number seems to be inversely cor-
related. This means that an increase in the amount of con-
nections generally leads to a decrease in the number of at-
tractors, these results are in agreement with ?.

The second analysis considers basin entropy (see Figure
??). Also in this case we see an increment in the entropy
value according to the degree of disorder of the network.
Nevertheless, this difference is minimal between critical and
chaotic networks. Congruently with the previous results on
attractor number, the basin entropy value of interacting net-
works is higher than that of isolated networks. Specifically,
in some cases the basin entropy value even doubles that of
an isolated network of the same size. Also in this case,
the number of connections between interacting networks is
negatively correlated with the basin entropy value. This is
clearly visible in the bidirectional interaction in critical and
chaotic networks. Since an increase in the value of basin en-
tropy can be explained either primarily by an increase in the
number of attractors or, alternatively, by a greater tendency
toward a uniform discrete distribution, we introduce an ad-
ditional analysis based on the measure of Average Absolute
Deviation (AAD) to get a clearer picture of what is happen-
ing to basins sizes. The AAD measure—which show the
average absolute deviation of the normalized basin sizes—
is in our case defined as 1

n

∑n
i=1 |xi − µ|, where n are the

number of attractors, xi the normalized basin size of attrac-
tor i and µ the mean over all attractors. As can be seen in
Figure ?? the increase in basin entropy of the interacting net-
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works is mainly underpinned by an increase in the number
of attractors, compared to the isolated networks. However,
it can be observed that the increase in the basin entropy of
critical compared to chaotic networks is explained more by
a reorganization of the size of their attractor basins (higher
occurrences of values with low AAD around to value 10 on
the x-axis) than by the contribution of the number of attrac-
tors (longer tail corresponding to more attractors with low
AAD values).

The third analysis consists in verifying the dynamical
regime state of the network according to the Derrida value
(see Figure ??). The isolated networks produce median val-
ues of 0.5 for ordered networks, 1 for the critical, and 1.5
for the chaotic, consistently with the theory on the critical
line (?). When considering the Derrida value of interacting
networks, it is possible to see that the mean value moves to-
ward 1 in case of ordered and chaotic networks, and remains
stable for critical ones. This happens even when we con-
sider the number of connections. As the number of connec-
tions increases, the joint dynamic of the interacting networks
tends to 1. In other words, all the three types of networks
seem to converge toward a critical dynamics when they in-
teract.

The fourth and fifth analyses involve complexity metrics
to capture properties of the BN attractors. We first consider
the similarity among the attractors of a given network: the
more similar the attractors, the more restricted the repertoire
of available stationary behaviors. For this study we applied
the Lempel-Ziv complexity as a practical estimate of the
Kolmogorov complexity of the set of the attractors in each
network. To compare the overall trend among each of the
three dynamical regimes in the case of isolated and interact-
ing BNs, we averaged across the median values computed
on the 100 replicas for each type of configuration. The cor-
responding barplots are shown in Figure ??. We observe that
isolated chaotic RBNs are characterized by a higher attrac-
tor complexity with respect to the interacting chaotic RBNs.
This means that the attractors are more compressible—to
some extent—in interacting networks, i.e. interactions re-
duce disorder in chaotic networks. As for critical RBNs, we
note that interacting critical networks are characterized by
a feebly higher attractor complexity, while ordered RBNs
do not show differences between the isolated and interacting
cases.

Finally, we consider the maximal attractor distance in
terms of normalized compression distance. The correspond-
ing results are shown in Figure ??. As for the previous case,
we took the medians of the values of interest and we aver-
aged them across the different kinds and number of connec-
tions in the case of interacting networks. For the statistics
we only considered the BNs with at least two attractors. The
maximal attractor distance is the highest for chaotic RBNs,
both isolated and interacting. This value decreases on aver-
age for interacting networks, moving towards values com-

parable to those of critical BNs. For these latter networks,
the average maximal distance slightly increases. The dif-
ferences between isolated and interacting ordered BNs are
rather low as well, even though a moderate increase in the
interacting case can be observed. Summarizing, the max-
imal attractor distance statistics seem to reduce the differ-
ences among different regimes when interactions take place.
These last two analyses confirm the observations of the first
ones, suggesting that interactions bias the dynamics of the
network towards criticality.

Discussion
The previous results give us some insights on the character-
istic of the interactions between models of single cells. The
main consideration relates the dynamics of the coupled sys-
tem, and how it differs from its isolated components (i.e., the
cells). We consider the case of cells in different dynamical
regimes, which interact with each other. Interestingly, the
results indicate that the coupled dynamic of interacting cells
always tends towards a critical state. This suggests that the
starting dynamic of a single component lose importance as
it starts to interact with its neighbors. If proved correct, this
theory may allow abstracting away from single cells when
studying tissues and focusing on the dynamics of the overall
ensemble.

As the results of this study show that interaction can
considerably change the dynamical property of chaotic net-
works and mildly those of ordered ones, such that they
tend to move towards properties characterizing the critical
regime, we conjecture that not only criticality is favored
by evolution, but it also represents a sort of stable meta-
attractor. This would provide a further explanation of why
living systems are poised in critical regions, but it also raises
new questions, such as if multicellular organism are com-
posed of atomically critical components or they are (also)
the result of the interaction of disordered (or ordered) com-
ponents.

Conclusion
In this work we have studied dynamical properties of inter-
acting RBNs. We have analyzed number of attractors, basin
entropy, complexity of attractors, maximal attractor distance
and the Derrida parameter of pairs and triplets of RBNs, un-
der directional and bidirectional connections of varying size.
The comparison with isolated RBNs of the same size as the
compound ones show a tendency of changing the properties
of chaotic and ordered RBNs towards criticality. This out-
come calls for further and deeper investigations of interact-
ing genetic regulatory network models. First of all, we plan
to extend the experiments to RBNs with large size. Fur-
thermore, instead of considering pairs and triplets of BNs,
we plan to analyze the properties of tissue-like structures.
More, the results stimulate further analyses involving mul-
ticellular configurations that also take into account the pro-
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Figure 2: Average absolute deviation (AAD) of the normalized basin sizes for the isolated and interacting networks cases.

cesses of cell reproduction, i.e. mitosis and meiosis. Finally,
as the role of interactions might be considerable in reducing
disorder in chaotic networks, the relation between evolution
and criticality should probably be investigated in more de-
tail: not only evolution would favor critical network, but
simple interactions might just be sufficient to create—or not
disrupt—criticality upon which evolution can operate.
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Figure 3: Number of attractors of isolated and interacting networks.
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Figure 4: Basin entropy of isolated and interacting networks.
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Figure 5: Derrida value of isolated and interacting networks.
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Figure 6: Lempel-Ziv complexity of attractors in isolated and interacting networks.
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Figure 7: Maximal compression distance of attractors in isolated and interacting networks.
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