

Emergent Dynamics in Heterogeneous Life-Like Cellular Automata

Aarati Shrestha¹, Felix Reimers¹, Sanyam Jain¹, Paolo Baldini², Michele Braccini², Andrea Roli² and Stefano Nichele^{1,3}

¹Østfold University College, Halden, Norway ²University of Bologna, Cesena, Italy ³Oslo Metropolitan University, Oslo, Norway

Felix Reimers | Faculty of Computer Science, Engineering and Economics

11/18/2024

Some Motivation and Related Work

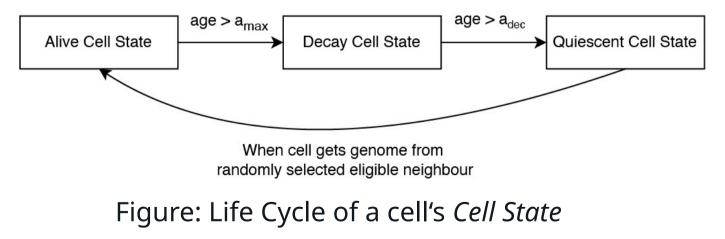
The well-known Game of Life has been studied extensively over the last decades.

Except for very specific conditions, it does not necessarily show open-ended behaviour. Furthermore, it is limited in its robustness. Extensions to GoL have begun to deal with that:

https://en.wikipedia.org/wiki/ Conway's_Game_of_Life

- Genelife^[1,2], HetCA (Heterogenous Cellular Automata)^[3,4], SproutLife^[5], evolife^[6]
- We are contributing a different framework, where aliveness and computation are conceptually separated:

Our Approach


The Game of Life has been extended in the following way:

- Grid State:
 - Life-like rules: Rather than the classical B2/S23, all variations of B/S are possible, totaling in 2 × 2⁹ combinations.
 - > *Heterogeneity* : Different cells can have different rules.
 - Mutation and Inheritance: At birth, the rules of a cell may be inherited with mutation from another cell in its neighborhood.
- We refer to the present rules as the *genotype* and to the resulting *grid state* as the *phenotype*

Our Approach

- > Cell State:
 - Life-span: After birth, each cell has a counter increasing over time, denoting its Cell State or age.

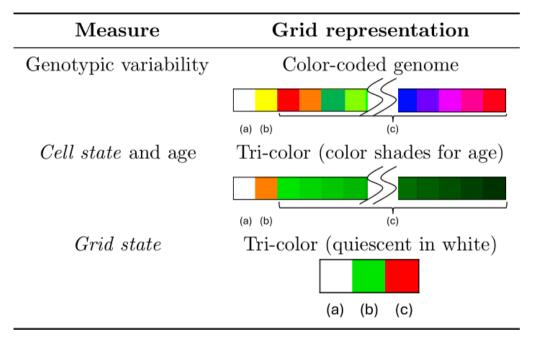


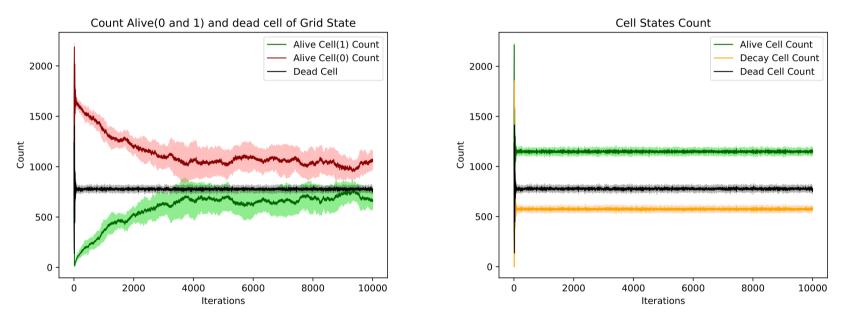
Table: Qualitative Phenotypic and Genotypic Measures

YouTube video link

Qualitative results for a_{max} =10, a_{dec} =15 on a grid size of 50x50

Felix Reimers | Faculty of Computer Science, Engineering and Economics

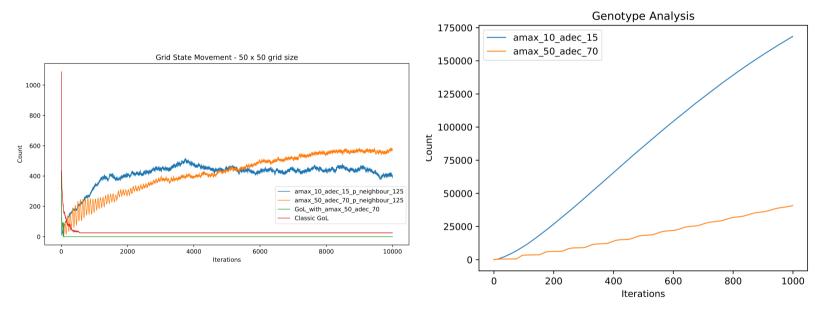
Measures


The behaviour of the Cellular Automata is measured both qualitatively and quantitatively.

Measure

Cumulative number of discovered rules $Grid \ state$ fluctuation Number of alive, decay, and quiescent cells Number of cells in state 0, 1, and quiescent

Table: Quantitative Phenotypic and Genotypic Measures



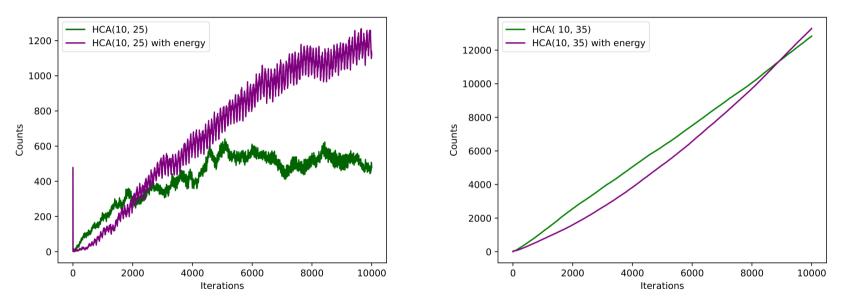
State counts for a_{max} =10, a_{dec} =15 on a grid size of 50x50, averaged over 10 runs

11/18/2024

Fluctuations and exploration on a grid size of 50x50, averaged over 10 runs

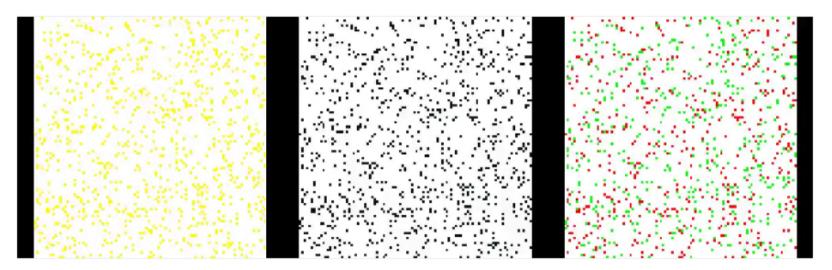
Felix Reimers | Faculty of Computer Science, Engineering and Economics

11/18/2024


9

- Scillation, especially in the early iterations and a growing amount of state 1.
- Steadier, but still varying behavior of the grid states, state 1 is present throughout.
- > A steady exploration of the genotypic space.

Long-term dynamics in the genotype and phenotype.



Fluctuation and exploration for a_{max} =10, a_{dec} =25 on a grid size of 100x100, averaged over 5 runs

11/18/2024 11

YouTube video link

Qualitative results for a_{max} =10, a_{dec} =25 on a grid size of 100x100

Felix Reimers | Faculty of Computer Science, Engineering and Economics

Questions?

Felix Reimers | Faculty of Computer Science, Engineering and Economics

11/18/2024 13

References

- McCaskill, John S., and Norman H. Packard. "Analysing emergent dynamics of evolving computation in 2D cellular automata." *Theory and Practice of Natural Computing: 8th International Conference, TPNC 2019, Kingston, ON, Canada, December 9–11, 2019, Proceedings* 8. Springer International Publishing, 2019.
- Packard, Norman H., and John S. McCaskill. "Open-Endedness in Genelife." Artificial Life (2024): 1-34.
- Medernach, David, et al. "Long-term evolutionary dynamics in heterogeneous cellular automata." Proceedings of the 15th annual conference on Genetic and evolutionary computation. 2013.
- Medernach, David, et al. "Evolution of heterogeneous cellular automata in fluctuating environments." Artificial Life Conference Proceedings. One Rogers Street, Cambridge, MA 02142-1209, USA journals-info@ mit. edu: MIT Press, 2016.
- Shapiro, A.: Sproutlife (2022), https://github.com/ShprAlex/SproutLife [Accessed: (June 2, 2024)]
- Zamaraev, A.: Evolife (2016), https://github.com/a5kin/evolife [Accessed: (June 2, 2024)]

Experimental Setup – Original Experiment

Parameter	Value
Eligible Cell State to Inherit Genomes	[Alive]
Probability Initial Alive Cell State	0.5
Probability Alive Cell State with Value 1	0.5
Inheritance Probability	0.125
Mutation Probability P_{mut}	0.2
a_{max}	10, 50
a_{dec}	15, 70
Initial Rule	B3S23

15

Experimental Setup – Original Experiment

Parameter	Value
Eligible Cell State to Inherit Genomes	[Alive]
Probability Initial Alive Cell State	0.1
Probability Alive Cell State with Value 1	0.5
Inheritance Probability	0.125
Mutation Probability P_{mut}	0.02
a_{max}	10, 50
a_{dec}	15, 70
Initial Rule	B3S23
Energy Parameter	Value
\mathbf{Energy}	25
Energy Depletion Per Iteration	1
Energy Distribution Ratio	0.02
Energy Interval	50

(I) Østfold University College

