
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS OF CESENA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
Second Cycle Degree in Computer Science and Engineering

SELF-ASSEMBLY
IN VOXEL-BASED ROBOTS

Thesis in

INTELLIGENT ROBOTIC SYSTEMS

Supervisor

Prof. ANDREA ROLI

Co-Supervisor

Prof. ERIC MEDVET
Dott. MICHELE BRACCINI
Dott. PAOLO BALDINI

Presented by

FILIPPO BENVENUTI

Academic Year 2022 – 2023

To my beloved Lucia Sacchetti

Contents

Introduction vii

1 Self assembly 1
1.1 Definitions . 1

1.1.1 Properties . 2
1.1.2 Categories . 2
1.1.3 Disambiguation . 4

1.2 History of self-assembly . 5
1.2.1 First step . 6
1.2.2 Modular Robots . 9
1.2.3 S-Bots and Sambot . 14
1.2.4 Latest advancements . 17

2 Technologies 21
2.1 2D-Robot-Evolution . 21

2.1.1 2-D Multi Robot Simulator 21
2.1.2 Java General Evolutionary Algorithm 22
2.1.3 Java Named Builder . 25

2.2 Data description and visualization 28
2.2.1 Processor script . 29
2.2.2 Plotter script . 32

2.3 Cluster configuration . 35
2.3.1 Portainer . 36

3 Experiments 39
3.1 Preliminary tests . 39

3.1.1 Genetic evolutionary algorithm 40
3.1.2 Covariance Matrix Adaptation-ES 43

3.2 Final experiment . 44
3.2.1 Setup . 45
3.2.2 Results . 49

3.3 Future developments . 54

v

vi CONTENTS

3.3.1 Time . 55
3.3.2 Algorithms . 56
3.3.3 New tasks . 59

Conclusion 61

Acknowledgements 63

Introduction

Self-assembly is an innovative domain, a process whereby individual
robotic units, without centralized control, autonomously organize into desired
structures or patterns to achieve complex tasks. Cherished in fiction films and
cartoons, its significance in literature appears to be awaiting further explo-
ration, as it has not quite reached its pinnacle or received the level of formal
recognition it deserves. One aim of this master thesis is to provide a com-
prehensive understanding of self-assembly mechanisms, beginning with a de-
tailed examination of its definitions, properties, and historical advancements,
as outlined in pertinent literature. Additionally, this thesis aims to advance
the field through experimental research for further validating the feasibility
of self-assembly mechanisms. Through rigorous analysis of the experimental
outcomes, we aim to offer valuable insights that can enrich the existing body
of knowledge in this area. Furthermore, we aim to lay the groundwork for
potential future developments, thereby fostering continued exploration and
expansion of the research initiated in this thesis.

The thesis is divided into three main chapters:

1. Self assembly: the first chapter elucidates properties, categories, and
definition of self-assembly, encompassing similar terms to disambiguate
among them. An historical overview, spanning from initial developments
to the latest advancements, is provided to furnish the reader with a
comprehensive understanding of the projects and experiments related to
self-assembly documented in the literature.

2. Technologies: the second chapter comprises a detailed description of
the software and hardware used to undertake the experiments outlined
in this thesis. It includes an illustration of 2D Robot Evolution, the Java
framework employed for describing and executing evolutionary experi-
ments. Additionally, Python scripts utilized for processing and visualiz-
ing raw data extracted from experimental results are provided. Further-
more, a detailed description of the cluster utilized to run the experiments
is included.

vii

viii INTRODUZIONE

3. Research experiments: The third chapter delineates all computational
research work undertaken, including descriptions of all preliminary ex-
periments categorized by methodology (Genetic evolutionary and CMA-
ES). It encompasses a detailed account of the final experiment, both in
terms of setup (e.g., experiment description, parameters, fitness) and the
results obtained(e.g., videos screenshots and numerical graphs). More-
over, it includes an exposition of potential future avenues for research
that can be pursued based on this foundation.

Chapter 1

Self assembly

In this chapter, we provide a comprehensive description of the definitions
found in the literature about Self-assembly and its peculiarities, followed
by a collection of robotic projects that exploit those kinds of potentialities or
proof of concepts.

1.1 Definitions

The definition of self-assembly is not always provided in the contributions
that can be found in the literature. Most of the time, articles avoid elaborating
on the theory behind it, concentrating instead on the project being developed.
In the rare cases in which a definition is provided, the same one from a gen-
eral point of view is reported: “Self-assembly is the phenomenon in which a
collection of particles spontaneously arrange themselves into a coherent struc-
ture” [19].
This definition refers to the behavior we can observe in natural contexts like
biology[4] (ants, wasps..) and chemistry[19] (molecule formation..), the same
one we would like to be able to program into our robots. When it comes to
the argument of robotics, this definition leaves an important characteristic im-
plicit: “It is assumed that the individual units have onboard power and the
ability to locomote, or are deterministically moved to the appropriate place by
other powered units”[37]. This significantly impacts how we think of robots
capable of self-assembly and dismisses the visionary idea given to us by films
or cartoons, where those kinds of robots eventually learn how to fly by being
attracted by a non-specified force.

1

2 CHAPTER 1. SELF ASSEMBLY

1.1.1 Properties

“The design of components that organize themselves into desired patterns
and functions is the key to applications of self-assembly” [19], remarks the
importance of taking into consideration the structure of robots: the ability to
move, the need of a particular environment, forces used to ensemble 1.1.2 and
communications involved 1.1.2, will change the whole use case scenarios due
to a different set of abilities which can be exploited.
In a general manner, calling each building component a unit and dividing units
into groups, the properties describing a self-assembly robotic system can be
summarized as[32]:

• Replaceability: All the units in a group are the same, have the same
functions, and can be replaced by any other units of the same group.

• Design freedom: One can freely design the system by connecting the
units like LEGO blocks, the only limits should be physics rules (feasibil-
ity).

• Scale extensibility: Capacity of scale extension or contraction; the
scale of the system can be changed by adding or removing units.

It is important to keep in mind that we are now only considering self-assembly
systems in the field of robotics, in other contexts not all of those properties
can be found (e.g., with molecules we cannot play as we do with LEGOs, or
can we?).

1.1.2 Categories

Just a few examples of self-assembly applied to robotics can be found in
the literature, most of them being described in section 1.2, each introducing
a new category in terms of: “Self-assembly comes in two modes, category A
and category B”. For the ease of the reader, we list a description of all of these
categories:

• Homoheterogeny: robot units are divided into groups, and each group
contains only one type of unit being all the same replicated.

– Homogeneous: only one group exists, units are all the same; for
example, ants[4] building a bridge or piling up.

– Heterogeneous: multiple groups exist, and each group contains
replicated fundamental units for each “subtask”; for example, in
assembling a bike, we could have a group of resistant units devoted

CHAPTER 1. SELF ASSEMBLY 3

to structure, a group of soft ones for rubber wheels, and a group of
strong units for the chain.

• Actipassivity: the kind of energy involved between units, the way en-
ergy is used to accomplish the ensemble[19],[38].

– Passive: units interact according to their geometry or surface chem-
istry and tend towards a thermodynamic equilibrium in which they
are assembled, then stop dissipating energy; for example, an instant
tent, that once released reaches its stable position mounting up it-
self. Keep in mind that instant tents are not self-assembled, but
the energy involved in this process gives a good example to better
understand this kind of passivity.

– Active: units may expend energy to accept some interactions with
other particles while rejecting others according to a program, never
reach a final stable form, always dissipate energy, for example, units
equipped with magnets that can be turned on and off to attach and
detach from other units.

• Stynamicity: if we call “body” the final aggregation of units, whether
or not the body contains moving parts.

– Static: a formed body that does not require any moving units to
be functional; for example, furniture in a house, once a chair is built
it only needs to stay built, it can be moved, but it does not need to
have moving units.

– Dynamic: once the body is formed, it still contains moving units
which are useful for the functionality of him self; for example, a
walking robot needs to have moving units in order to be able to walk.
Another perfect but visionary example is in “Big Hero 6” [3], the
robot of “Hiro Hamada” during the bots-fight scene, dynamically
self-assembled from “Microbots”.

• Link type: the way units link to or attract each other, permanently
or intermittently (whether or not once attached they can be detached),
softly or hardly (if connection fixes two units movements or leave at least
one rotational free axe).

– Grab: units link mechanically, through moving parts able to lock
one or more units, usually intermittently and both softly and hardly.
For example, “ants link their legs and bodies with their tarsal
claws, forming layer upon interlocking layer of chains and nets of
workers”[4].

4 CHAPTER 1. SELF ASSEMBLY

– Magnetic: units attract magnetically, through permanent magnets
or electromagnets, softly or hardly based on the power used and the
surface conformation, for example, kid toys Geomag1.

– Bond: units “glue” to each other, both permanently and intermit-
tently, both softly and hardly, for example, magnetism can be seen
as a bond or more specifically velcro which effectively glues units.

• Centralization: the place where units control logic is put.

– Centralized: all the control logic is grouped in a single point,
giving units an external controller.

– Decentralized or distributed[32]: every unit has its controller
and shares the same control logic with units of the same group.
In this case, units usually require the ability to communicate with
each other, distinguishing from local and global, if units can only
communicate with other neighboring units or the whole of them
indistinctly.

1.1.3 Disambiguation

Self-assembly is closely associated with other terms in the form “self-*”.
For the ease of the reader, we have listed the most related terms to provide a
concise definition and elucidate the primary distinctions with self-assembly:

• Self-organizing: “The main questions in the area of programmed self-
organization concern the ability to engineer the global behavior of a
system by means of local rules” [19], at a general point of view self-
organization underline the paradigm of how robots in a swarm are pro-
grammed: a bottom-up approach where the behavior of single entities
defines the global result. Self-organizing limited to robotics leads to
the usage of “modular robots that can latch on to each other, rotate
or translate with respect to each other, and communicate with each
other by means of peer-to-peer communication devices. Through local
interactions, a group of modular robots can reconfigure into a variety of
shapes, repair itself, and even self-replicate” [19], constrained like this
self-organizing can be seen as a synonym of self-assembly; however, keep
in mind that to avoid ambiguities, it is important to always specify the
context of swarm robotics.

1https://www.geomagworld.com/

CHAPTER 1. SELF ASSEMBLY 5

• Self-reconfiguration: “the ability to transition from one topology to
another using a series of attachments and detachments” [37], ineluctably
a fundamental aspect of self-assembly, but not one of his synonym: self-
assembly also includes the ability to reach a configuration without a start-
ing stable form or the ability to dynamically move portion of body1.1.2,
which are not included in self-reconfiguration.

• Self-repair: “Self-repair robots are modular robots that have the capa-
bility of detecting and recovering from failures. It consists of detecting
the failure of a module, ejecting the bad module and replacing it with
one of the extra modules” [13], an ability that can be exploited by self-
assembly, it is reasonable to think that if the system can build himself
from a random initial configuration it can also build itself again changing
one or more defective units (obviously replacements must be available).

• Self-replicate: “Fully autonomous machines that can construct func-
tional copies of themselves from many very basic components” [20], a
theoretical concept not necessary for self-assembly, but an ambitious
idea that self-assembly could exploit to greatly enhance its capabilities
in self-repair or scalability. A visionary example of a robot with appre-
ciable ability of self-assembly and self-replication is “Gort” from “The
Day The Earth Stood Still” [2].

In culmination of the comprehensive insights presented in Section 1.1, the
concept of self-assembly can be refined and enriched as follows:

“Self-assembly in robotics refers to the capacity of a random dis-
tributed swarm to spontaneously arrange himself into a coher-
ent structure through self-organization, in pursuance of a deter-
mined task, encompassing properties such as replaceability, de-
sign freedom, and scalability. The implicit attainment of self-
reconfiguration and self-repair is feasible. Additionally, while not
intrinsic to the process, the strategic incorporation of self-replication
can further enhance the system’s capabilities.”

1.2 History of self-assembly

At a high level of conceptualization, self-assembly is the ability to deal with
all feasible tasks by the manner of the same units, an idea seen in films and
cartoons as a representation of a revolutionary technology able to adapt to any
situation and to overcome every problem. Despite that, about self-assembly
not a lot can be found in literature, therefore in this section we would like to

6 CHAPTER 1. SELF ASSEMBLY

provide an overview of the most relevant projects, to clarify the current state
of the art.

1.2.1 First step

In this section, we commence an exploration into the foundational steps of
self-assembly, beginning with an examination of the seminal work that initiated
theoretical discourse, followed by an in-depth analysis of the pioneering project
marking the transition from theory to practical implementation.

CEBOT

Cebot [14] (Cell Structured Robot) is a distributed robotic system consist-
ing of separable autonomous units, called cells. Cebot represents the first robot
designed for Dynamically Reconfigurable Robotic System (DRRS), a
new kind of robotic system which is able to reconfigure itself to optimal struc-
ture depending on purpose and environment. Namely, self-assembly.
The functional cells are able to communicate with each other, approach, con-
nect and separate automatically. If single cells of CEBOT are damaged, they
can be repaired or replaced automatically to maintain system function. This
makes CEBOT a self repairing and fault-tolerant robot system, CEBOT is
capable to adapt itself to changing environments, it is a flexible system appli-
cable in space, factory, hostile environments and other conditions.
In the paper [14] is proposed the approaching, connecting and separating
method (rendezvous-docking method) and optimal structure decision method
which can determine cell type, arrangement, degree of freedom and link length.
Also, experiments proposed shows that the automatic approach: connection
and separation, can be done successfully.

Figure 1.1: Cebot I version and two Cebot II version attached

CHAPTER 1. SELF ASSEMBLY 7

In Figure 1.1 respectively Cebot version I and II. Version II has three
infrared photodiodes, three ultrasonic sensors (one transmitter and two re-
ceivers), eight strong focused photodiodes in eight different directions in 45
degree intervals.
Experiments with those robots were conducted in a flat area without obsta-
cles, the task was to assemble into a coherent structure, results are described
in paper [14].

First project

It is important to notice that we refer to one of the first experiments to
actually provide a practical way to implement self-assembly in real life, through
simulations of robots which could effectively being built in mass, under the
proper name of self-assembly. The project, described in “Self-Assembly and
Self-Repair Method for a Distributed Mechanical System”[32] published in
1999, simulate a method for self-assembly through the usage of a homogeneous
group of units and explore the possibilities of self-repair.

Figure 1.2: Unit for self-assembly and self-repair

The unit is composed of six arms as shown in Figure 1.2, each containing a
pair of optical receiver/transmitter to communicate with other attached units;
the three arms in the middle (darker) has electromagnet, with which they can
decide to ensemble or disassemble from other units. Units can only move by
the mean of repulsive and attractive forces of magnets, forcing at least an

8 CHAPTER 1. SELF ASSEMBLY

arbitrary shape as a starting position. The article propose two different ways
to develop self-assembly:

Figure 1.3: Project globally shared between units

The first is based on a common knowledge of the final form to be achieved,
as we can see in Figure 1.3 every unit gain his logical type by mean of in-
teractions with other attached units, if his logical type is in accordance with
neighbor types nothing happen, in other case the unit takes a random moving
action (if possible). In a simulation, they claim to have reached a successful
rate of 97% assembling a triangle made of 10 units (failure includes two cases:
the terminated assembly of a different shape and a nonterminating assembly
activity in a fixed time), but only a successful rate of 73% in the case of a
triangle composed of 15 units, evidently making this method non-scalable.

Figure 1.4: Stages of kernel layer formation

CHAPTER 1. SELF ASSEMBLY 9

The second method is quite complex, for the ease of the reader we summa-
rize the conceptual outline of the method as follows. Starting from an arbitrary
connected shape, a unit is chosen, being the kernel and the starting point of
the shape, now his neighbor are adjusted as expected from the project, when
the kernel is completely covered by correct placed units, the process repeat
satisfying new neighbors until completion (it builds the shape following the
same concept of a BFS) as shown in Figure 1.4. A simulation with 75 units
succeeded in 979 cases out of 1000, the required steps ranged from 1702 to 4775
and the average was 2600. This last method is certainly more complicated,
but shows promising and interesting results.

1.2.2 Modular Robots

Starting from 2002, when “Modular Robots”[41] was published, researchers
studied self-assembly under the name of modular robots, focusing on the abil-
ity of a swarm of robots to adapt to outdoor ambient. Thanks to their ability
to change form, they could adapt to constantly varying tasks and environments
without any external support, being really useful, for example, in remote ex-
ploration of hostile environments (E.g., under the sea, at the scene of a natural
disaster, on other planets, ..), where you can’t know what will be needed to
proceed in advance. Follows a short list of the most interesting modular robots
projects selected from “Modular Self-Reconfigurable Robot Systems”[40] pub-
lished in 2007:

PolyBot

PolyBot from “PolyBot: a modular reconfigurable robot”[39] published in
2000, is a modular reconfigurable robot system composed of two types of mod-
ules, one called a segment and one called a node: the segment module has 1
DOF and 2 connection ports, the node module is rigid with no internal DOF
and 6 connection ports. Both generation 1 (G1) and generation 2 (G2) of Poly-
bot aim to achieve the versatility desired from self-reconfiguration systems, G1
and G2 shares the same structure while G2 is a superset of G1 with enhanced
capabilities. The structure of G2 is made of laser-cut stainless steel sheet and
is basically cube shaped, weighing 416g. Two opposing faces of the cube have
connection plates. The module’s one DOF allows these two faces to be rotated
so they are no longer parallel, they can be rotated up to +90 or -90 degrees
and allows two connection plates to mate in 90 degree increments.
For the programming part of Polybot, gait control tables with a set of finite
possible configurations were used, this method has been tested over an obsta-
cle course while under semi-teleoperated control, showing that a finite set of

10 CHAPTER 1. SELF ASSEMBLY

movements is sufficient to achieve tasks of many applications.
Finally, the Polybot G3 is again an enhancement of the G2, this time with
a major improvement brought by changing the central DC motor which was
deforming the shape of the robot, as can be seen in Figure 1.5, with a DC
pancake motor completely contained inside the robot.

Figure 1.5: G2 Polybot unit

Programmable Parts

A programmable part described in “Programmable Parts”[9] and shown in
Figure 1.6 consists of an equilateral triangular chassis that supports three con-
trollable latching mechanisms, three IR transceivers, and a PIC18F242 based
control circuit mounted on a custom-made PC board. Each edge of the chassis
is 12 cm long and the chassis is 1.2 cm high (although the motors add another
3 cm to the height of the part). Each latch consists of three NeFeB perma-
nent magnets: one fixed and the other two mounted on the end of a small
geared DC motor. The position of the movable magnet is determined using
Hall Effect sensors and mechanical switches. If they mutually decide to remain
bound to each other, they do nothing. If at any point they mutually decide
to detach from each other, each temporarily rotates its movable magnet 180º,
forcing the parts apart. In the cited paper, is also introduced an experimental

CHAPTER 1. SELF ASSEMBLY 11

self-organizing robotic system and showed how graph grammars can be used
to direct its self-organization.

Figure 1.6: Programmable part design

The project described in “Programmable Self-Assembly”[19] published in
2007 makes use of Programmable Parts to conduct self-assembly experiments
guided by a graph grammar. A set of rules is distributed among all the units,
those describe the behavior related to attach and detach, for example, “two
particles labeled a and that are not attached to each other can attach to each
other, in which case they change their labels to b”. The experiment described
leaded to the formation of a hexagon starting from random positions of units
(as shown in Figure 1.7), in the paper is shown the proof that this method
can be used for self-assembly programming and also permit post programming
optimization through parameters tuning.

12 CHAPTER 1. SELF ASSEMBLY

Figure 1.7: Programmable parts self-assembly time frames

SuperBot and Miche

SuperBot [29] in 2006 and Miche[15] in 2006 follows the same idea of Poly-
bot [39] during the design of units’ shape, maintains the cubic form but change
the way they actually function.
SuperBot (Figure 1.8A) has being designed for NASA space exploration pro-
grams, the idea of realization is quite similar to Polybot [39], but it has three
degrees of freedom with enhanced capabilities of torques. A network of Su-
perBot can share electricity power through its connections and communicate
through high-speed infra-red LEDs.
Three different approaches were used to program SuperBot : (i) hormone in-
spired distributed control, (ii) table based control for fast prototyping, and (iii)
phase automata for coordinating module activities. Experiments done showed
a peculiar difference from single to dual module gaits, single gait favors actions
of a single SuperBot, moving around, flipping and changing direction. Dual
gaits enhanced the capabilities to synchronize movements between units using
communications.

CHAPTER 1. SELF ASSEMBLY 13

Figure 1.8: (A) SuperBot and (B) Miche

Miche (Figure 1.8B) is a modular lattice system capable of arbitrary shape
formation. Each module is an autonomous robot cube capable of connecting to
and communicating with its immediate neighbors. The connection mechanism
is provided by switchable magnets. The modules use face-to-face communica-
tion implemented with an infrared system to detect the presence of neighbors.
The group of modules collectively decides who is and is not on the final shape
using algorithms that minimize the information transmission and storage. Fi-
nally, the modules not in the structure let go and fall off under the control of
an external force, in this case gravity. All the algorithms controlling these pro-
cesses are distributed and are very efficient in their space and communication
consumption.

Follows a complete list (Figure 1.9) of modular self-organizing robot projects
from 1988 to 2006 [40]:

14 CHAPTER 1. SELF ASSEMBLY

Figure 1.9: Modular self-organizing projects

1.2.3 S-Bots and Sambot

Starting from 2005 with S-Bots [11] and later in 2010 with Sambot [35]
researchers moved their effort into find innovative and optimized ways to pro-
gram self-assembly into distributed swarms composed of those two robots (sep-
arately), instead of trying to redesign a whole new robot suitable for the job.
The two robots are first introduced, then a list of the following experiments is
provided.

S-Bots

S-Bots are fully autonomous mobile robots lonely able to accomplish simple
task such as navigation, grasping objects and perceiving environment.

CHAPTER 1. SELF ASSEMBLY 15

Figure 1.10: A photo of an s-bot

As we can see in Figure 1.10, s-bots are round robots with tracks and wheels
used for navigation, a gripper on the front to grasp objects or other s-bot,
multiple sensors to perceive themselves and the environment within they are,
communication devices to detect and communicate with other s-bots, such as
an omnidirectional camera, colored LEDs around the robot’s turret, and sound
emitters and receivers.
In order to be able to make experiments, a 3D dynamics simulator called
Swarm-bot3d2 was implemented. The simulator provides s-bot models with
the functionalities available on the real s-bots. Swarm-bot3d is able to sim-
ulate realistic dynamics and collisions of rigid bodies in 3 dimensions, with a
four level differentiation of details: the less detailed aimed to speed up training
processes, the most detailed aimed to validate resulting controllers.

Sambot

Sambot is a completely autonomous robot designed to satisfy requirements
such as autonomous mobility, self-assembly (with an active docking mecha-
nism, so that it can realize autonomous connection and separation), locomotion

2https://www.swarm-bots.org/index.php@main=3&sub=33.html

16 CHAPTER 1. SELF ASSEMBLY

(the formed robotic structure should be able to move) and self-reconfiguration
(one robotic structure can transform into another).

Figure 1.11: Technical details of a sambot

As we can see in Figure 1.11, sambot is a complex box with wheels to
navigate and a mobile active docking station to attach to other sambots. On
the active docking interface, there is a pair of active docking hooks, which can
dock with any pair of docking grooves in the front, back, left, or right passive
docking interface on the autonomous mobile body of another Sambot. The
interface of the active docking robot rotates 90° forward or backward. The
docking touch switch and docking infrared sensors on the active docking inter-
face are used to guide the docking and judge whether the two Sambots are in
the state of docking.
Thanks to his structure, sambot can be considered a fully autonomous mo-
bile robot. But once the robotic structure is composed, it can have excellent
abilities of locomotion and reconfiguration.

Projects

It is interesting to have a complete vision on self-assembly tasks that has
been tried to be solved, and with which methodology. It is the objective of
the next table, to show a summarized and comprehensive list of projects which
brought a contribution for self-assembly within the usage of s-bots and sambot.

CHAPTER 1. SELF ASSEMBLY 17

Year Robot Task Method Cite

2005 s-bot heavy object transportation sub-task ad hoc or neural [11]

2006 s-bot flat and rough terrain attaches swarm int. and evolutionary [16]

2006 s-bot cooperative hole avoidance artificial evolution [33]

2007 s-bot hill crossing finite state machine [28]

2007 s-bot morphology creation growing from seed [27]

2010 sambot snake-like and quadruped configuration graph theory behavior based [36]

2011 sambot self docking and locomotion behavior motor schema [35]

2013 sambot exploration and locomotion behavior based [21]

2014 sambot cross formation timed automata [34]

2015 sambot pass over a barrier evolutionary config and controller [22]

1.2.4 Latest advancements

Once again, maybe driven by latest technologies improvements, researchers
in self-assembly moved their effort into the creation of new or better robots,
follows the description of latest works and results.

Sambot II

Sambot II is a new self-assembly robot, actually an improvement of the
older version Sambot I, as we can see in Figure 1.12, Sambot II has a couple of
new sensors and LEDs. The LED-camera is a customized HD CMOS, it can
sense images and colors from real world.

Figure 1.12: Sambot II new structure and sensors

The Laser-camera unit consists of a laser tube and a camera, placed like
described in Figure 1.13, with a slight angle α and β pointing to the middle.
Knowing those parameters, thanks to the position coordinates of the laser in

18 CHAPTER 1. SELF ASSEMBLY

the image, it is possible to mathematically estimate the distance between the
laser-camera and the wall the laser hits.

Figure 1.13: Sambot II laser-camera details

Those two new sensors, combined with LEDs on the passive docking sur-
face of sambot, increased the efficiency and accuracy of the self-docking system.
Those sensors have a different load of data to be elaborated, to make it possible
to be used, the older stm-32 processor has been replaced by an x86 dual-core
CPU. The new processor brings with him new capabilities of image elabora-
tion and path finding, two keys which effectively improved the new sambot II
abilities, up to 80% of success in docking [31].

FireAntV3

FireAntV3 [30] uses a refined version of the 3D Continuous Docks to
attach to other such docks at any location at any orientation with simple
control and without alignment. The robot can sense forces, the direction of a
light source, and contacting neighbors using vibrations.

CHAPTER 1. SELF ASSEMBLY 19

Figure 1.14: FireAntV3 design

As seen in Figure 1.14, FireAntV3 consists of three spheres mounted on
forks and joined by a center body. These spheres contain the majority of the
system electronics and sensors and are coated in a continuous docking surface
that allows peer robots to form strong attachments to each other regardless
of the location or orientation of contact. Placing the spheres closely together
helps ensure that any approach by a like robot will result in dock-to-dock con-
tact, though this greatly constrains the size of the center body.

Experiments with FireAntV3 demonstrated his functioning, the first exper-
iment, phototaxis, was made in an arena as shown in Figure 1.15, the robot
starting in the opposite side of the light, was able to reach the light in 5 steps
(images are ordered steps by number). The robot was randomly placed on the
opposite side, with no effort into placing him in the correct way or the correct
angle.

Figure 1.15: FireAntV3 phototaxis experiment

The next experiment is Step-on, step-off, with this experiment authors
meant to demonstrate effectiveness of communication with vibrations and con-
tinuous docking surface. The experiment is composed of an arena, a complete

20 CHAPTER 1. SELF ASSEMBLY

FireAntV3 robot and fixed sphere component, the task for the complete robot
is to, starting from the floor, step on the fixed sphere object and then step
off on the other side. The robot was able to accomplish the task in steps as
described in Figure 1.16.

Figure 1.16: FireAntV3 Step-On Step-Off experiment

Chapter 2

Technologies

In this chapter, we describe 2D-Robot-Evolution [23], a Java framework
for experimenting with the evolutionary optimization of 2D simulated robotic
agents. We also introduce the data describer, later used to verify and visualize
results from our experiments.

2.1 2D-Robot-Evolution

2D-Robot-Evolution is a java framework which merges voxel-based soft robots
(VSRs) simulation capabilities of 2dmrsim2.1.1 with evolutionary computa-
tions capabilities of jgea2.1.2. 2D-Robot-Evolution makes usage of jnb2.1.3, a
Java library for building instances of classes given textual descriptions, to de-
scribe experiments to be executed (properly formatted), avoiding the necessity
to recompile sources when the experiment is changed.

2.1.1 2-D Multi Robot Simulator

2D-Multi Robot Simulator (2dmrsim) is a Java framework capable of VSRs
simulations, it is a newer version of 2D-VSR-Sim (2dhmsr) [24][25] capable of
simulate more kinds of robots and decoupled from the inner physics simulator.
2D-VSR-Sim is a simulator of one or more 2-D VSRs that perform a task, i.e.,
some activity whose degree of accomplishment can be evaluated quantitatively
according to one or more indexes. The simulation is discrete in time, using a
fixed time step, and continuous in space: the position and configuration of each
voxel of the VSR is updated at each time-step according to the mechanical
model and to the VSR controller.

21

22 CHAPTER 2. TECHNOLOGIES

Figure 2.1: VSR inner composition

In 2D-VSR-Sim a voxel is a soft 2-D block, i.e., a deformable square mod-
eled with four rigid bodies (square masses), a number of spring–damper sys-
tems (SDSs) that constitute a scaffolding, and a number of ropes. SDSs and
ropes have zero mass; ropes act as upper bounds to the distance that two
bodies can have. Figure 2.1 shows the mechanical model of a single voxel: the
four masses are depicted in gray, the different components of the scaffolding
are depicted in blue, green, red, and orange, the ropes are depicted in black.
Every parameter of the voxel can be configured: masses, dimensions, friction,
and other aspects are adjustable. The scaffolding is also configurable, selecting
a subset of springs groups (the ones being colored in Figure 2.1).
The way a VSR behaves is determined by a controller. Whenever it is in-
voked, the controller determines, for each voxel vi of the VSR, the control
value fi ∈ [−1, 1] to apply. The control value is applied by the physics engine
and results in a change in the area of the corresponding voxel and hence a
change in the shape of the VSR. The control value can be calculated in any
way, can be a constant, can be time-dependent, usually is the result of the
combination of sensors readings.

2.1.2 Java General Evolutionary Algorithm

Java General Evolutionary Algorithm (jgea) [26] is a modular Java frame-
work for experimenting with Evolutionary Computation, designed to be aimed
at providing a general interface to potentially all Evolutionary Algorithms,

CHAPTER 2. TECHNOLOGIES 23

solid and easy to use for people who rely on Evolutionary Computation as a
tool.
Given a problem, an Evolutionary Algorithm act as a solver for it, with the
goal to find one or more solution to the problem. In jgea those concepts are
modelled with interfaces, follows details on structure and components.

Problem

Any problem can be described by a class implementing the Problem inter-
face, that defines the solution space S and a way of comparing two solutions,
by extending the PartialComparator<S>.

public interface Problem<S> extends PartialComparator<S> {}

When solutions are compared according to their quality (fitness value), a
QualityBasedProblem<S, Q> extends Problem<S> is used, this interface adds
two functionalities, one to obtain the quality value from a solution, the second
to compare those qualities. Here, Q represents the quality- or fitness-space.
When we want to enforce a total ordering between qualities of solutions, a
TotalOrderQualityBasedProblem<S, Q> extends QualityBasedProblem<S, Q>

interface is used, adds a TotalOrderComparator() and gives a default imple-
mentation for qualities comparator.
When the quality of the solution is already comparable (i.e., Q extends Comparable)
the following interface is used:

ComparableQualityBasedProblem<S, Q extends Comparable<Q>> extends
TotalOrderQualityBasedProblem<S, Q>

To model more specific classes of problems, it is sufficient to add interfaces
extending or classes implementing Problem interface.

Solver

A problem can be solved by an implementation of the Solver interface,
which is responsible for providing the caller with a collection of solutions upon
the invocation of its method solve().

public interface Solver<P extends Problem<S>, S> {
Collection<S> solve(

P problem,
RandomGenerator random,
ExecutorService executor

) throws SolverException;
}

24 CHAPTER 2. TECHNOLOGIES

The generic parameter P indicate the subset of problems a Solver can tackle.
solve() takes two additional elements: a RandomGenerator and an Execu-
torService. The contract for solve() states that every random number has to
be generated through RandomGenerator, thanks to this constraint repeatabil-
ity is granted. However, reproducibility cannot be granted, due to concurrency.
Similarly, the contract for solve() states that the ExecutorService instance will
be used for distributing computation across different workers of the executor,
easily done due to the nature of the problems to solve, addressing also on effi-
ciency.
Jgea provides some prominent Evolutionary Algorithms (Grammatical Evo-
lution, Hierarchical Grammatical Evolution, Weighted Hierarchical Grammat-
ical Evolution, Context-free Grammar Genetic Programming), Evolutionary
Strategies, OpenAI ES, CMA-ES, Map Elites, Speciation Evolution, Diversity
Driven Grammar-guided Genetic Programming, Differential Evolution, and
NSGA-II implementations.

Individual

The notion of individual is used, modeled in the Individual record, to
capture the genotype-phenotype representation. Two generics parameters, G
and S, define the genotype and the phenotype spaces, respectively. A generic
parameter Q to store the quality (or fitness) of the solution.

public record Individual<G, S, Q>(

G genotype,

S solution,

Q fitness,

long fitnessMappingIteration,

long genotypeBirthIteration

)

To create an instance of Individual, we need to (i) obtain a genotype, (ii) map
it to the corresponding phenotype, and (iii) evaluate the fitness of the candidate
solution. Note that an Individual also stores the iteration at which the fitness is
evaluated (fitnessMappingIteration), and the iteration at which the genotype
is obtained (genotypeBirthIteration): these values model the “evolutionary
age” for the individual in the evolutionary optimization run it belongs to. A
genotype can either be created from scratch, or it can be the result of the
application of genetic operators on pre-existing genotypes.
Several Evolution Algorithms require selecting individuals for reproduction or
survival. The Selector interface is used to model the selection process.

CHAPTER 2. TECHNOLOGIES 25

public interface Selector<T> {

<K extends T> K select(

PartiallyOrderedCollection<K> ks,

RandomGenerator random

);

}

A few concrete selector implementations are provided, such as the Tournament,
replicating the tournament selection, or the First and Last, returning the best
or worst individual (or a random one among them, in case of fitness ties).

Listener

Even though problems could in principle be solved in-the-void, it is often
necessary to track the execution of the solver, extracting and saving informa-
tion during the run. To this extent, the Listener interface is provided.

public interface Listener<E> {

void listen(E e);

default void done() {}

}

A Listener has the duty to monitor, i.e., listen() to, the updates of the
state during the execution of the solve() method. The monitoring of the ex-
ecution, either parallel or sequential, of multiple instances of Solver solving
multiple instances of Problem, distinguishes individual executions while saving
or printing all information on the same target (e.g., the same CSV file for all
the evolutionary runs).
Concerning the information to be extracted from the state, one might be in-
terested in the size of the population, the quality of the best individual, some
function of the best individual, and so on. To allow the users to easily define
the information they want to extract, and associate a name, and possibly a
display format, to it, the NamedFunction interface is provided. Typically, a
List of NamedFunctions is passed to the constructor of a ListenerFactory,
and each of them is invoked on a state within the listen() method to extract
the needed information.

2.1.3 Java Named Builder

Java Named Builder (jnb1) is a Java library for building instances of classes
given textual descriptions properly formatted. The core concept is the one of

1https://github.com/ericmedvet/jnb

26 CHAPTER 2. TECHNOLOGIES

named builder, which can build instances of classes given a named param-
eter map (or named dictionary, using a different term). A named parameter
map is simply a collection of (key, value) pairs with a name.
More specifically, jnb provides a few interfaces and classes for doing the fol-
lowing key things:

1. annotating an existing class or method to be used as a builder: the key
artifacts for this are the annotations @Param and @BuilderMethod.

2. parsing a textual description into an object storing the information needed
to invoke a builder: the key artifact here is the interface NamedParamMap.

3. building a builder automatically from annotated class: the key artifact
here is the NamedBuilder.

You can annotate a method or a constructor (also of a record) to make it discov-
erable by the methods fromClass() and fromUtilityClass() of NamedBuilder.

public static Person young(@Param("name") String name, @Param(value

= "age",dI = 43) int age) {

return new Person(name, 18);

}

will result in a named builder where the name is young (possibly with a pre-
fix, as in the previous example) and the expected parameters are name and,
optionally (in the sense that there is a default value of 43), age.

A named parameter map is a map (or dictionary, in other terms) with a
name. It can be described with a string adhering to the following human-
and machine-readable format, described by the following grammar:

<npm> ::= <n>(<nps>)

<nps> ::= ∅ | <np> | <nps>;<np>

<np> ::= <n>=<npm>|<n>=<d>|<n>=<s>|<n>=<lnpm>|<n>=<ld>|<n>=<ls>

<lnmp> ::= (<np>)*<lnpm>|<i>*[<npms>]|+[<npms>]+[<npms>]|[<npms>]

<ld> ::= [<d>:<d>:<d>] | [<ds>]

<ls> ::= [<ss>]

<npms> ::= ∅ | <npm> | <npms>;<npm>

<ds> ::= ∅ | <d> | <ds>;<d>

<ss> ::= ∅ | <s> | <ss>;<s>

CHAPTER 2. TECHNOLOGIES 27

Where:

• < npm >: is a named parameter map.

• < n >: is a name, i.e., a string in the format [A-Za-z][.A-Za-z0-9_]*.

• < s >: is a string in the format ([A-Za-z][A-Za-z0-9_]*)|("[^"]+").

• < d > is a number in the format -?[0-9]+(\.[0-9]+)?.

• < i > is a number in the format [0-9]+.

• ∅: is the empty string.

An example of a syntactically valid named parameter map is:

car(dealer = Ferrari; price = 45000)

where dealer and price are parameter names and Ferrari and 45000 are pa-
rameter values. car is the name of the map.
Two examples with the ∗ operator:

2 * [dog(name = simba); dog(name = gass)]

// Corresponds to:

[

dog(name = simba);

dog(name = gass);

dog(name = simba);

dog(name = gass)

]

(size = [m; s; xxs]) * [hoodie(color = red)]

// Corresponds to:

[

hoodie(color = red; size = m);

hoodie(color = red; size = s);

hoodie(color = red; size = xxs)

]

28 CHAPTER 2. TECHNOLOGIES

An example of combined use of ∗ and + is:

+ (size = [m; s; xxs]) * [hoodie(color = red)]

+ [hoodie(color = blue; size = m)]

// Corresponds to:

[

hoodie(color = red; size = m);

hoodie(color = red; size = s);

hoodie(color = red; size = xxs);

hoodie(color = blue; size = m)

]

2.2 Data description and visualization

Raw data extracted during experiments describes, for each seed and iter-
ation, the best genotype in terms of fitness among the population being eval-
uated. Taking in consideration that the best genotype is not guaranteed to
be preserved in the next generation, final fitness curves result in an oscillating
curve as shown in Figure 2.2.

Figure 2.2: Example of oscillating fitness line

CHAPTER 2. TECHNOLOGIES 29

For statistical purposes, it was necessary to obtain a non-decreasing fit-
ness line, which could be utilized to extract relevant data. To accomplish this
objective, the processor script2.2.1 was developed. It takes raw data from
experiments and produce processed data which maintain, for each iteration
and seed, the best genotype with his details found until the current iteration.
With processed data, it was possible to extract interesting statistic results,
in detail we analyzed the Run Length Distribution (RLD) of fitness, to
study the learning curve of experiments, and generated the Violin plot of fit-
ness across iterations and seeds, to observe its distributions trends in different
experiments. From processed data, to generate graphs described above, the
plotter script2.2.2 was developed.

2.2.1 Processor script

The processor script takes in input the CSV file containing raw data and
produces in output another CSV with processed data. In detail, the CSV
generated has headers: seed, iterations, evals, fitness, and genotype as shown in
Figure 2.4. Rows contain, for each iteration and seed, the best genotype details
found until that iteration, ensuring for each seed a non-decreasing fitness line
along all iterations, an example provided in Figure 2.3.

Figure 2.3: Non-decreasing fitness line

30 CHAPTER 2. TECHNOLOGIES

Figure 2.4: Processed data CSV file headers

The processor script with inline comments2.1 are self-explanatory, but it is
interesting to notice that, despite iterations should be naturally ordered inside
the file, ordering for iteration is forced to ensure the correct functioning of the
script. Notice that, some redundant data could be left out (keeping only rows
describing greater and not equal fitness than before), but for later usage, it was
convenient to maintain it in the file. Follows the processor script definition.

CHAPTER 2. TECHNOLOGIES 31

import pandas as pd
import glob

Searching for files to process.
files = glob.glob(’dataM∗e.csv’)

for file in files :
Read the CSV file
print(f ’Reading {file }... ’)
df = pd.read csv(file , delimiter=’;’)

Initialize lists to store processed data
new rows = []
current best fitness = {}
current best genotype = {}

Iterate through the rows sorted by iterarions
print(f ’Processing ... ’)
for index, row in df . sort values (by=[’ iterations ’]) . iterrows() :

seed = row[’seed’]
iterations = row[’ iterations ’]
best fitness = row[’best?fitness ?s.task. l .xDistance’]
best genotype = row[’best?genotype?base64’]

Update current best fitness and genotype for the seed
if (seed not in current best fitness) or (best fitness >

current best fitness [seed]) :
current best fitness [seed] = best fitness
current best genotype[seed] = best genotype

Append the processed row to the new data
new rows.append([seed, iterations , row[’ evals ’],

current best fitness [seed], current best genotype[seed]])

Create a new DataFrame with processed data
new df = pd.DataFrame(new rows, columns=[’seed’, ’iterations’, ’evals’ ,

’ fitness ’ , ’genotype’])

Write the new DataFrame to a CSV file
print(f ’Saving processed CSV...’)
new df.to csv(file . replace(’M’, ’P’), sep=’;’ , index=False)

Listing 2.1: process data.py

32 CHAPTER 2. TECHNOLOGIES

2.2.2 Plotter script

The plotter script takes in input the processed CSV generated with proces-
sor script and produces RLD and Violin graphs. In detail, the RLD graph2.5
shows in percentage how many replicas had success until a certain iteration, it
is easy to understand that if the best genotype is kept among iterations; that
line can only be non-decreasing.

Figure 2.5: Example of an RLD graph

The Violin graph2.6 shows the distribution of fitness along all iterations
and seeds, the graph is tighter or wider corresponding to minor or major fitness
concentration. That graph is called ”Violin” cause of the classic form it usually
assumes.

CHAPTER 2. TECHNOLOGIES 33

Figure 2.6: Example of a Violin plot

Once again, the plotter script with inline comments2.2 are self-explanatory,
but it is interesting to notice the complexity of RLD calculation, which involves
a set, that was developed before the realization of the processor script, and
was a solution to avoid the necessity of processed data. Follows the plotter
script definition.

34 CHAPTER 2. TECHNOLOGIES

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from itertools import groupby
import glob

Constants
MIN FITNESS = 0
MAX FITNESS = [40, 23, 13]
RLD SUCCESS THRESHOLD = 9

Searching for files to show.
files = glob.glob(’dataP∗e.csv’)

for idx, file in enumerate(files) :
Read the CSV file
print(f ’Reading {file }... ’)
df = pd.read csv(file , delimiter=’;’)

Group the data by iteration
grouped = df.groupby(’iterations’)
n seeds = len(df.groupby(’seed’))

Run Length Distribution (RLD) calculation
print(’Plotting ... ’)
rld = []
rld s = set()
for iteration , group in grouped:

rld s .update(group.loc[df[’ fitness ’] >= RLD SUCCESS THRESHOLD
+ idx][’seed’].values.tolist())

rld .append(len(rld s) / len(group))

Plot graphs
fig , axes = plt.subplots(1, 2, figsize =(12, 6))

Run Length Distribution (RLD)
ax rld = axes[0]
ax rld .plot(rld , label=’RLD’, color=’blue’)
ax rld . set title (f ’Run Length Distribution ({idx+1}+epsilon)’)
ax rld . set xlabel (’ Iterations ’)
ax rld . set ylabel (’Success (%)’)
ax rld . set ylim(0, 1)
ax rld .legend()

CHAPTER 2. TECHNOLOGIES 35

Violin Graph
ax violin = axes[1]
sns. violinplot (x=df[’ fitness ’], ax=ax violin)
ax violin .axvline(x = RLD SUCCESS THRESHOLD+idx, color = ’r’, label

= f’Success line: {RLD SUCCESS THRESHOLD+idx}’)
ax violin . set title (f ’Violin Graph ({idx+1}+epsilon)’)
ax violin . set xlabel (’Fitness values ’)
ax violin . set ylabel (’Fitness ’)
ax violin . set xlim(MIN FITNESS, MAX FITNESS[idx])
ax violin .legend()

Save the plots to files
print(’Saving plotted figures ... ’)
plt . tight layout ()
plt . savefig (file . replace(’P’, ’ I ’) . replace(’ .csv’ , ’ .png’))
plt . close ()

Listing 2.2: plot processed data.py

2.3 Cluster configuration

The usage of population-based algorithms notoriously requires a lot of time
and computation capabilities, besides the firstly experiments which ran on a
simple portable pc, it was quite obvious from the beginning that a hardware
with more capabilities was necessary to continue with longer and more com-
plex experiments. A machine with strong CPU performance was needed, we
so decided to rely on Cluster 4.0 at the disposal of students and researchers of
Unibo Cesena Multicampus. Cluster 4.0 is a small cluster composed of three
high-performance machines (Figure 2.7), for our experiments we were assigned
to a machine with 64 physical cores and 134.8 GB of RAM (iris.apice.unibo.it).
Thanks to the new hardware, we were able to scale up our experiments, incre-
menting complexity in terms of number of voxel or number of run parallelly
running, which eventually lead us to the results we obtained3.2.2.

Figure 2.7: Cluster 4.0 machines composition

36 CHAPTER 2. TECHNOLOGIES

2.3.1 Portainer

For the ease of use among multiple users, the cluster has been initialized
and can be controlled through Portainer.io2, a versatile container manage-
ment software, which simplify and orchestrate operations like containers de-
ployments, management, troubleshooting, and security. Portainer.io consists
of two main parts: a Server and an Agent2.8. The Portainer Agent runs
on the node on a cluster and communicates with the Portainer Server. The
Portainer Server centrally manages up to 25,000 nodes it connects to.

Figure 2.8: Portainer server-agent architecture

The best fit for our experiments, it’s been the separation in two macro
parts: the Worker and the Publisher. The Publisher component, designed
as a stack swarm, is accessible externally through the link iris.apice.unibo.it,
and contains a simple HTTP server created from the implementation given
with python:

python -m SimpleHTTPServer 30022

2https://www.portainer.io/

CHAPTER 2. TECHNOLOGIES 37

SimpleHTTPServer creates a web server which, by default, serves the file sys-
tem. In our case, this was useful to download in local experiments results, to
elaborate and observe them, operations computationally feasible without the
need of such a lot of CPU. It is important to know that the cluster is not
publicly accessible, to be able to see and to use it, you must before gain the
access to the VPN of the research department, then your credentials has to
be activated by system administrators. So, the opening to the exterior of a
simple HTTP server doesn’t impact on security of the cluster.
The Worker is a docker container with a fresh Ubuntu installation, pack-
ets like openjdk-17-jdk openjdk-17-jre maven tmux htop are installed to
run experiments and to monitor resources usage. This container born to run
experiments, it is so configured to use all the CPU (64 cores) and 50 GB of
RAM (experiments shown that was enough). Worker shares a volume where
data files are saved with the Publisher, in this way they are always synced and
results are observable without slowing down the Worker. Thanks to the usage
of an external volume, persistency of data is also granted, meaning that even
if the cluster get shutdown for any reason, results saved in the volume are not
lost.

Chapter 3

Experiments

In this chapter we illustrate the entire work done in terms of preliminary
tests3.1, firstly with Genetic Evolutionary algorithms and later with Co-
variance Matrix Adaptation Evolution Strategy, which guided us from
the correct setup and execution of our research experiment3.2.1, until the col-
lection and presentation of results3.2.2. There is also a section devoted to
Future Developments3.3 created to guide paths that could be taken start-
ing from this work.

3.1 Preliminary tests

Population-Based algorithms [7] offer great capabilities for optimization
problems in which a proven optimal solution is not needed and for which
exact algorithms might be excessively demanding in terms of computational
resources. This property makes them suitable for our experiments, but, as
for many other algorithms, they require component fine-grain design and pa-
rameter tuning. The choice of hyperparameters, the experiment setup and
the definition of fitness have a great impact on efficacy and efficiency of algo-
rithms.
Those statements, hence the importance of experience and the necessity of
early tests, to properly set up a longer and exhaustive training experiment.
In this section, we explain all the choices made, from first tests to the final
experiment, remarking errors and successes which guided us to the final setup
and results.

39

40 CHAPTER 3. EXPERIMENTS

3.1.1 Genetic evolutionary algorithm

We started our tests by reproducing a working and verified experiment pro-
vided with 2D-Robot-Evolution [23] described in the dedicated GitHub1

repository. The example provided aim to train a biped-VSR, showed in Figure
3.1, onto right walking in a flat terrain, later observing through created video,
his behavior in a hilly terrain.

Figure 3.1: example biped VSR

The example uses an implementation of a Genetic Algorithm based on
the search of correct weights for multiple MLP networks, each assigned to a
specific voxel as his controller, forming a heterogeneous distributed controller.
Each MLP takes in input data provided by sensors ”placed” on his voxel,
in this case a total of six sensors, then those signals are processed through a
single hidden layer toward the output layer, which gives values to be used by
actuators of the voxel, which can be both forces on springs or values to be
transmitted to near attached voxels.

1https://github.com/ericmedvet/2d-robot-evolution

CHAPTER 3. EXPERIMENTS 41

Figure 3.2: Biped VSR parameters

In Figure 3.2 are shown configurable parameters of the evolutionary algo-
rithm implementation and his default values. In particular, we denote:

• nEval: The number of evaluations, which is not the number of iter-
ations, it indicates how many individuals are evaluated, it provides an
idea of computation load needed to finish the experiment. If nEval is set
to 1.000 and nPop (population size) is set to 100, the resulting iterations
number will be: 1.000 / 100 = 10 iterations.

• mapper: Which defines parameters relative to the experiment: unit-
Number (how many voxel are present), nSignals (number of communi-
cation channel between voxel), sensors and the function (in this case
MLP) definition. We also decide if controllers are heterogeneous or ho-
mogeneous between voxel.

After successfully observed the biped-VSR right-walking, we implemented a
new kind of voxel, SA-VSR (self-assembly VSR), also able to attach and
detach to/from neighbors. Keeping everything else untouched and placing
the 64 new voxels in a square starting position as shown in Figure 3.3A, we
restarted the experiment. This test brought a simple result, voxels initially
attach just to be able to orderly detach and correctly fall to the right side, as
shown in Figure 3.3B.

42 CHAPTER 3. EXPERIMENTS

Figure 3.3: SA-VSR square starting position

Subsequent experiments, made with more sensors or changing the task,
from right locomotion, to stand piling (reach the maximum possible height),
gave similar results as before, falling apart or trying to stand still as long as
possible. Sometimes spectacular results shown up, an interesting example is
the formation of a spinning top, which used the momentum force to launch a
voxel into the air, maximizing the height reached. To avoid those solutions,
clearly caused by some exploit of the physic engine behind the experiment, we
limited actions per time that a voxel could make, effectively observing more
“stable” (in terms of physic correctness) results.
SA-VSRs brought with them a computation problem, experiments with those
voxels were six to seven times slower. In the table below are presented results
from experiments with few evaluations, to better understand reasons behind
this slowness:

N units Attach/detach Threshold Nearest voxel Time (m)

64 No − − 3.20
64 Yes 0.1 Search 19
64 Yes 0.5 Search 15.30
64 Yes 0.5 Fixed 3.40
8 Yes 0.5 Search (8 runs) 1.50

A simple run without attach and detach operation, took 3.20 minutes, the
same run but with attach and detach operation enabled took 19 minutes. The
problem was related to the attachment operation, which brings the search op-
eration to find the nearest voxel, to verify it, we tested attach and detach with
a fixed voxel target, this effectively brought back times like the original one:
4.40 minutes. We could not disable attachments, and we could not implement
more efficient research methods (due to time constraint), so we took a two-step
solution:

CHAPTER 3. EXPERIMENTS 43

1. Increment the threshold for attach and detach operations, output re-
sponsible for that is a value (v) between -1 and 1, if v is greater than
the threshold, an attachment attempt is made, contrarily, if v is less
than negative threshold, a detachment is made. With a threshold of 0.1,
random initial values from MLP caused a lot of attachment/detachment
attempts, uselessly incrementing the time computation, with a threshold
of 0.5 time reduced from 19 to 15.30 minutes.

2. Lower the number of voxels, this definitely incremented the efficiency,
running 8 runs of the same experiment (with different seed for random
numbers), each with 8 voxels, lead to a run time of 1.50 minutes, even if
the total number of units is the same.

Latest experiments, running 8 runs in parallel, with 8 voxels each and a ho-
mogenous controller, starting with laid down units on a line as in Figure 3.4A,
shown interesting but not perfect results, shown in Figure 3.4B, achieved by
somersaults, climbing, and jumps.

Figure 3.4: SA-VSR starting line position

3.1.2 Covariance Matrix Adaptation-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [18] is an
evolution algorithm for numerical optimization. CMA-ES has shown more
stable and efficient than a classical genetic algorithm[10][5]. We decided to
change our optimization method from a generic genetic algorithm to the usage
of CMA-ES.

44 CHAPTER 3. EXPERIMENTS

For the first tests, we reproduced the same experiments setup as before, within
the tasks of right-walking and piling up, obtaining more or less the same results,
but with a total different efficiency. Observing the Fitness trend in Figure 3.5
it is clear that, both for right walking (left) and piling up (right) experiments,
a lot less iterations can or are enough to find a solution comparable with the
maximum found all along.

Figure 3.5: Right walking and piling up fitness trend with CMA-ES

This reduction on needed iterations, brought benefits to our experiments;
now we were able to add more sensors to voxels and to use a larger MLP, to
obtain more complicate controllers which potentially can lead to more inter-
esting solutions or, like in our case, the possibility to solve more complex tasks.
This opportunity led us to the definition of the final experiment, later described
in 3.2, which briefly consists of SA-VSR voxels which needs to collaborate to
be able to cross a flat area with a hole on their way.

3.2 Final experiment

In this section, we provide a full description of the experiment done. The
idea was to find a task that requires self-assembly to be successfully completed,
but at the same time a feasible task. The adequate task was found reading
literature described in section 1.2, some projects aim to create robots able
to navigate in general unknown and irregular terrains, some more specific
simplifies that in sub-problems like locomotion over an inclined plane and hole
avoidance. This last scenario, taken from “Cooperative Hole Avoidance in a
Swarm-bot”[33] inspired us for the formulation of our research experiment, we
thought that a complication of this setup would perfectly fit our needs. We
decided to continue research work with the same method (artificial evolution)
and to explore a new task: instead of hole avoidance, hole passing over. Pass

CHAPTER 3. EXPERIMENTS 45

over a hole involves multiple solutions to be exploited, totally different from
obstacle-hole avoidance, in this scenario singular behavior are also viable (jump
over), but in larger holes collaboration may be the only way out to complete
the task. This experiment, new in the literature, makes it possible to address
questions such as: Will units collaborate or split up? As little holes can be
passed with small groups of units, will robots prefer small or big groups? Is
the ability of attachment and detachment useful? Once formed, will they ever
change their shape again?

3.2.1 Setup

The experiment aims to collect relevant data for statistic purpose. We
defined parameters for voxel and controller and created three similar scenarios
to observe different learning curve and success rate. Each scenario starts with
the eight voxels positioned on a line placed on the floor, as shown in Figure
3.6A. In front of them a hole which differs in width for each scenario, sizes are
{[xw + ϵ, xw + ϵ, xw + ϵ]∀x ∈ [1, 2, 3]}3.6B where w is the width of a single
voxel and ϵ is a small enough amount to prevent x voxels to be able to cover
the hole, but also small enough to permit x + 1 voxels to bridge over it, in
principle.

Figure 3.6: Scenarios starting position [A] and holes widths [B]

There are 3 scenarios, each scenario has been tested for a total of 60 runs,
each run has a length of 30 virtual seconds (time is also simulated), for a
total of 15 real days of consecutive computation (more details are provided in
section 2.3). The general task is to reach the greatest distance right-walking.
No particular rewards are gained by the effective overcoming of the hole or the
velocity, but it is clear that those things indirectly contribute to the fitness
(due to time constraint, if a run is faster overcoming the hole, it probably will
reach greater distances).

46 CHAPTER 3. EXPERIMENTS

Parameters

Each run in the same scenario shares the same configuration, the only
difference is the seed used to generate random numbers, so, differences are the
random initial set of weights assigned to the MLP and the selection during the
mutation phase of the algorithm. Voxel s is homogeneous, it consists of the
same MLP network distributed in each one of them. Voxel are situated, i.e.,
they only know what they perceive and can make actions with their actuators:
stretching and releasing springs, communicate with, and attach and detach
from neighbors.
In particular, each MLP has an input layer of 18 values, formed like this:

• 14 sensor values: angle (the current rotation angle of the body), area
ratio (current area of the body divided by the rest body area), contact (1
if body has at least one contact with another body, 0 otherwise), distance
to body (distance to the nearest body in a specified direction), rotated
velocity (current body rotation velocity), side attachment (one for each
face, 1 if attached on that side, 0 otherwise), side compression (one for
each face, distance between center and the side), sinusoidal (the sin of
time passed until run beginning, useful for voxels synchronization).

• 4 input communications: for each side of the voxel, a signal from
other attached voxels. This can be used to communicate with neighbors.
If none voxel is attached to a particular side, 0 value is returned.

Three hidden fully connected layers of size 17, 17 and 14.
An output layer of 12 values, formed like this:

• 4 output communications: for each side of the voxel, a signal to send
to other attached voxel. This kind of value can be written even if none
neighbor is attached, it will simply be ignored. Useful to communicate
with neighbors.

• 4 attach actuation: for each side of the voxel. If the value is greater
than the attachment threshold, then an attempt to attach is made, oth-
erwise if the value is less than the negative attachment threshold, then
detach is made. If an attachment or detachment is made without the
proper presence of a neighbor, nothing happen.

• 4 voxel actuation: for each spring of the voxel, the force to be applied
on it.

The MLP has a total of 1029 parameters to be adjusted.
The CMA-ES parameters are automatically calculated through formulas pro-
vided in Table 1 of cited paper[17]. In detail, we have:

CHAPTER 3. EXPERIMENTS 47

• p: number of adjustable parameters in MLP = 1029

• populationSize: 4 + ⌊3 · ln p⌋ = 24

• chiN:
√
p ·

(
1− 1

4·p +
1

21·p2

)
= 33.9458

• mu: ⌊populationSize/2⌋ = 12

• unnormalizedWeights[mu]: ln
(
populationSize+1

2

)
−ln(i+1)∀i ∈ (0 ≤ i ≤

mu) = [6.93147, 3.2581, 2.19722, 1.60944, 1.20397, 0.916291, 0.721348,
0.587787, 0.491536, 0.420195, 0.365946, 0.324236]

• sumOfWeights:
∑mu

i=0 unnormalizedWeightsi = 19.6075

• sumOfSquaredWeights:
∑

i = 0muunnormalizedWeights2i = 48.0591

• weights[mu]: unnormalizedWeights
sumOfWeights

= [0.353553, 0.166667, 0.112707, 0.082004,
0.0613254, 0.0467226, 0.0368196, 0.0300095, 0.0251202, 0.0214262, 0.0184962,
0.0160526]

• muEff : sumOfWeights2

sumOfSquaredWeights
= 7.70162

• cSigma: (muEff+2)
(p+muEff+5)

= 0.40118

• dSigma: 1 + 2 ·max(0,
√
(muEff−1

p+1
)− 1) + cSigma = 1.51666

• cc:
4+muEff

p

p+4+ 2·muEff
p

= 0.123362

• c1: 2
(p+1.3)2+muEff

= 0.00192997

• cMu: min(1− c1, 2 · muEff−2+ 1
muEff

(p+2)2
+muEff) = 9.69833

Fitness

The fitness function for this experiment is defined as: the difference between
the current X coordinate of center (as the mean of means of voxels vertexes
coordinates) of voxels and the initial positionX coordinate of center. To better
understand the process of fitness calculation, we can split it in sub-steps as
follows. First, for each voxel the center point is calculated as the mean of
the four vertexes of the current polyline which defines his borders, as shown
in Figure 3.7A, the red marks indicate the four vertexes, the blue one is the
calculated center. Then the center of voxels together is calculated as the mean
of centers, as shown in Figure 3.7B, the green point is the actual point used for

48 CHAPTER 3. EXPERIMENTS

fitness, in particular the X coordinate is used. From this value is subtracted
the first X center calculated, in this way the first fitness evaluated is always 0
and followings are positive if the experiment is going as we want, or negative
if it is not.

Figure 3.7: Voxel fitness calculation, red points are vertices of voxels, blue
points are centers, the green point is the calculated final center used for fitness

Major benefits of this fitness function derive from the facility of calcula-
tion and definition of success. Thanks to this fitness function and the hole
environment, it is possible to simplify the definition of success of a run: it is
enough to observe that if all the voxels fall down onto the hole, the maximum
fitness reachable is a value slightly lesser than the right wall X coordinate (if
they pile up against the wall); this means that if the final fitness of the run is
greater than this threshold, then it is obvious that the hole has been passed,
and it can be counted as a success. It is important to notice that there exist
cases in which the hole is being passed, but the fitness is below the threshold
(e.g., a small hole is being passed from 2 voxels, the other 6 stays in place),
those runs will be counted as non successes, but it is not a problem: if they are
too slow, or they don’t cooperate to reach the task objective, we can consider
those as run which did not correctly solve the task. Another advantage of
using the mean between voxels is that it intrinsically forces the cooperation
between them, as a suggestion on how to solve the task.

CHAPTER 3. EXPERIMENTS 49

3.2.2 Results

The final experiment took about 15 days of continuous computation on
the cluster2.3 to complete. The results achieved are in the form of videos and
numerical data. In short, we can say that the experiment undertaken was a
success and provided interesting and useful insights on self-assembly tasks in
general. Videos commenting3.2.2 with screenshots and statistic analisys3.2.2
with graphs are described below.

Video results

We think that for evolution experiments, visualization of behavior as videos
is both interesting and important for validation. Watching units playing in the
ground usually permits to understand how they decided to solve the task, and
more important, if their behavior is possible due to some glitch in the engine,
or it is logically and physically correct. For these reasons, we decided to add
this section enriched with screenshots, primarily to detect features of voxel
behavior hardly observable using only numerical data.
For all three configurations, if voxels decided not to assembly, the result was
the same in each case: a trail of voxels jumping onto the hole once per time3.8,
eventually reaching the bottom and failing the task. An intrigue behavior is
shown in Figure 3.8A(exp21 42), an example with the smallest hole, a falling
voxel (marked with a red dot) tries to stick to walls, probably to fill up the
hole stopping midair, and enable following voxels to pass over him. Unluckily,
the voxel did not stick to his position long enough and eventually fell to the
bottom.

Figure 3.8: Single voxel falling examples in the three hole configurations

When assembly was chosen, two, four or eight long worms were created,
between those only the eight-long worm form reached the top as the best in
each experiment. With the smallest hole, the decision to assembly was almost
always enough to solve the task (in rare cases, an eight-long worm still fell
down3.9A) due to wrong disassembly (exp21 32). With the medium hole, a
greater effort than simply forming was required, when approaching the hole,
it was essential to keep up the head3.9B to be able to bridge over the hole.

50 CHAPTER 3. EXPERIMENTS

Figure 3.9: Eight-long worms peculiar use cases

With the largest hole, keeping the head up was not sufficient to solve the
task, the weight of voxels was too much and this technique lead to the fall of
the worm inside the hole. But how can be seen in section 3.2.2, some runs
with the biggest hole, even if just a few, has succeeded. Solution found to
pass a too much large hole is quite intriguing. The eight-long worm is formed,
when the hole is approached a quite fast fall onto it begin3.10A, when only
few voxels on the tail remains out of the hole, two of them detach3.10B and
thanks to the momentum gained from the falling of the head, they successfully
reach the other shore, solving the task3.10C.

Figure 3.10: Largest hole solution frames

In general, excluding special cases with the largest hole, the most common
solution found was to form an eight-long worm, which permit voxels to bridge
over the hole without falling into it. That solution was quite expected, due to

CHAPTER 3. EXPERIMENTS 51

initial positions of voxels and his simplicity to be formed, the unexpected is
the general slowness of the worm, despite voxels could move faster and reach
further distances, they decide to move slow and safe. This could be the result
of too short trainings, e.g., not enough time to learn how to make the worm
move faster. Run the same experiment with more time given is part of future
developments3.3.
The phenomenon, wherein voxels opt to attach to one another, signals their
learned capacity to adopt a form configuration suitable to task resolution. This
outcome exactly align with the expectations of self-assembly, underscoring the
feasibility and potential of such systems.

Statistical results

For statistic purposes, we performed a total of 60 replicas for each experi-
ment configuration3.2.1 (1+ ϵ, 2+ ϵ, 3+ ϵ). For each replica, the only changing
parameter is the seed used to generate random numbers, resulting in different
sets of starting parameters in the MLP network. Doing so, we reached a high
enough number of experiments to be statistically relevant, for a total of ∼1.2
GB of CSV files. With the help of python scripts2.2, we post-processed raw
data and generated significant graphs, described below.
The violin graphs3.11, for each configuration, show trends of fitness along all
iterations. The red line shows the threshold of success, which is different for
each graph due to different hole sizes. In the first graph3.11(1 + ϵ) it is clear
that the experiment was a success, the mean of fitness is greater than the
success threshold, which indicates, in this case, that the task was simple and
fewer iterations could be used to find a merely working solution, surplus iter-
ations are used to improve the speed walking. In the second graph3.11(2 + ϵ)
the mean of fitness is under the success threshold, this does not directly mean
that the experiment was unsuccessful, but that it was harder for voxels to learn
how to pass over the hole. The success of configurations, for 1 + ϵ and 2+ ϵ is
not directly verifiable from those graphs, but looking at trends of both config-
urations we can say that few iterations were taken to understand how to reach
the hole, the majority of iterations finished falling into the hole (the tallest
graph part), then succeeding iterations distributes over the threshold with a
descending inclination. In 1+ϵ graph, reaching greater fitness, the curve tends
to get larger, this is due to a wrong configuration of width of the path, the
best runs reach the end of the arena hitting the right most wall. This does not
directly impact on the results of our experiments, the only observation is that
without this limit voxels could have learned to move faster than they actually
do.
The third graph3.11(3 + ϵ) clearly shows a failing experiment, apart from the

52 CHAPTER 3. EXPERIMENTS

starting iterations which has to learn how to walk, almost the whole of runs
finishes falling into the hole. Success threshold being over the graph, indicates
that, even few, some run succeed, as shown in section3.2.2.

Figure 3.11: Violin graphs for the three configurations

The Run Length Distribution (RLD) graph3.12 shows the percentage of
success (number of succeeding runs over the total) over iterations. From this
type of graph, it is possible to understand how training went, e.g., if graph
shows a long steady line, it means that training has wasted a lot of time.
Usually, the line formed has the aspect of a logarithmic function, fast-growing
at the beginning and then reaching a more stable value in the end.
The first graph3.12(1 + ϵ) shows an almost perfect curve to observe, starts
growing early in iterations (∼25) and reach a stable value at the end (∼75%).
This idiomatic graph is the proof that experiment 1 + ϵ can be considered as
success, and maybe even too easy to be solved. It is interesting, anyway, to
notice that adding more evaluations would not have added a lot of contribution
to rate success, it is visually correct to say that we stopped when an enough
stable value was reached. The second graph3.12(2 + ϵ) shows a more realistic
case, for the first iterations (∼50) no run has success, then the classic curve
takes place and reach a stable point, once again, just before hitting the end
of iterations. The final percentage of success reached is ∼50%. This means
that this variant is harder than the previous one, but still more than feasible.
Moreover, the success ratio can be further improved by a fine-tuning of the
parameters of the algorithm. The last graph3.12(3+ ϵ) shows that this variant
is way harder than the previous ones. The curve formed begins to grow at
the end of the allowed iterations and seems to be stable to 0.05% of success.
The best run with this configuration reached a fitness of ∼11.46: considering
that the threshold of success is 11, it means that the task was just sufficiently
solved. Nevertheless, it is important to emphasize that due to the difficulty
of the task, it was not enough to assembly and bridge over the hole. The few
successes demonstrate the potential of self-assembly: voxels did not only learn

CHAPTER 3. EXPERIMENTS 53

how to assembly in a suitable form to accomplish their task, but they also
learned how to disassembly at the right moment, to exploit the environment
in which they are (in this case exploiting gravity to create a catapult).

Figure 3.12: RLD graphs for the three configurations

As a further test, we took the succeeding genotypes from 1+ϵ environment
and tested them out in 2 + ϵ environment, our objective was to verify if the
training was general enough to solve more complex cases. This test resulted
in a not even one phenotype being able to solve the 2 + ϵ environment, also
stopping us from trying with the 3 + ϵ environment. The result obtained is
not so surprising: considering that each task is solved by a peculiar technique,
it is quite obvious that the controller generated from the train in a single
environment would not generalize over different configurations. Keeping that
in mind, we decided to try a new environment, in which the controller could
learn to generalize over different holes. We built the new configuration with the
three different holes one after each other3.13, and started a new training with
more than the triple of time for each run. Due to time constraints, we could
not run for many iterations, but we achieved an interesting result(exp27 best):
an eight-long worm is formed, the first two holes are passed over with the same
techniques saw before, then a similar behavior to ”catapult” over the third hole
seems to happen, but no detachment occurs, and all the worm falls down into
the hole.

Figure 3.13: Multi hole environment example

54 CHAPTER 3. EXPERIMENTS

In the following, the table with data for each configuration, aggregated per
seed relative to the best fitness. Precise data calculation considering only best
fitness of each replica confirm what we described above: configurations 1 + ϵ
and 2+ ϵ has mean greater than their threshold (19.212 > 9 and 11.050 > 10),
they can be considered as success. Configuration 3 + ϵ, instead, has the mean
lesser than his threshold (10.391 < 11) and also the 4th percentile lesser than
the threshold (10.502 < 11), those results confirm that the experiment has
failed. Max fitness registered, anyway, shows that some replica has succeeded.
Taken in consideration that the 3+ϵ task was difficult, those few solved replica
has great value, even if the configuration in its entirely can be considered a
failure, we still be able to solve the task3.2.2. Probably, with more iterations,
more replicas would have succeeded, further experiments would be necessary
to confirm it3.3.

Dataset Count Mean Std Min 25% 50% 75% Max

1 + ϵ 60.000 19.212 11.398 8.593 8.984 12.141 32.856 35.824
2 + ϵ 60.000 11.050 2.301 8.876 9.549 9.944 11.690 20.533
3 + ϵ 60.000 10.391 0.312 9.326 10.234 10.379 10.502 11.467

Final observations

Results obtained in those experiments are remarkable: they prove that
the concept of self-assembly is not only a futuristic idea, but that it can be
implemented and used to generate interesting solutions. It is important to
notice that we never directly told the voxels how they should have formed or
even that there was a hole to pass over, we only defined that the objective was
to maximize the X of their center. Voxels learned that in the environment there
was a hole to overpass, organized themselves to obtain the most suitable form
to solve the task, and decided that bridging over the hole was a solution. All
those facts can be considered a good starting point to continue the exploration
of self-assembly, and demonstrate that the idyllic idea behind it is not so
unachievable and should be pursued.

3.3 Future developments

In this section, we list a set of possible paths which can be chosen to
continue the work described.

CHAPTER 3. EXPERIMENTS 55

3.3.1 Time

It may sound trivial, but time is important. Most of the choices taken
has been limited by time, the most crucial being in regard of parameters of
experiments. Due to time constraints we could not explore in deep every single
experiment we made, we had to move from one experiment to another with full
knowledge of the facts. Taking in consideration that to achieve a good enough
result an experiment needed around 3–4 days of training, it is easy to see that it
was important to launch them knowing what will probably happen and to avoid
errors like bad configurations (e.g., misspelled a parameter), bug in the code
or steady learning line (training blocked on local minimum), it was important
to be sure in advance that 3–4 days later some interesting facts eventually
popped up. Due to this fact, it was crucial to test some scenario before the final
experiment, which lasted for 15 days of continuous computation. Preliminary
tests were shorter and necessary, took approximately 70 days of computation,
but surely enabled us to experiment and recalibrate one’s sights.
It could be interesting to dedicate more time on the final experiment, simply
incrementing the number of the evaluations or even changing parameters to
complicate it, for longer runs the population size could be incremented, the
MLP network could be enlarged with more inner layers, or inputs in terms of
sensors and communication could be increased. It could be interesting to even
try to replace the MLP network in its entirety, i.e., with a delayed recurrent
neural network or other kind of networks.
With more time, it could be wise to adopt strategies of incremental learning
and robot shaping[12], changing the environment as time passed or when the
task is successfully achieved. This kind of methodology could improve learning
rate on harder tasks, taking in consideration our experiment, we could define
success of the task when all the voxels pass over the hole without falling, then
increase the hole width without starting ahead the experiment, but preserving
the weights learned until this point. Stop condition, instead of number of
iterations, could be defined as a specific number of tries in a row without a
scenario change. If this number is high enough and sufficient time is provided,
this experiment setup could possibly find the limit of the greatest hole a certain
number of voxel can overpass.
Another interesting test that could be done with more time given, could be
the randomization of starting positions of the voxels, instead of starting on a
line, equally separated, laying down on the floor, it may be wise to define a
starting region where they can spawn and generate them randomly inside it
(without overlapping) for each iteration. This should augment the complexity
of the task without changing it, and represents a more realistic situation, where
initial setup is not static or known in advance. More time should be granted,

56 CHAPTER 3. EXPERIMENTS

to permit voxels being able to learn how to ensemble from random starting
positions.

3.3.2 Algorithms

Within this experiment, only two optimization algorithms were tested,
firstly approaching the problem with a genetic algorithm, later with CMA-ES.
It is important to keep in mind that there exists a lot of other optimization
algorithms, and it could be interesting to explore behavior with different ap-
proaches. A description follows of algorithms already implemented in JGEA,
which could actually being tested simply changing the configuration file.

Simple evolutionary strategy

A simple implementation of an evolutionary strategy [8], the base concept
from which genetic algorithms are born, the main difference resides on the
way the next generation of population is selected and mutated. A mechanism
of elitism in enabled to ensure the best genotype found is preserved along
iterations, also speeding up the learning, reducing number of iterations needed.
In Figure 3.14 are shown parameters for an evolutionary strategy.

Figure 3.14: Simple evolutionary strategy parameters

To better understand parameters shown in Figure 3.14, a detailed expla-
nation is provided:

• sigma: is a parameter which regulates the random Gaussian value ex-
tracted during offspring generation, in contradiction to genetic algo-
rithms where genetic operators are used, in basic evolutionary offspring
is generated from mean of parents, randomized by a Gaussian.

• parentsRate: the percentage of population selected as parents for next
generation, at every iteration parentsRate% of the population genotype
is selected to form the offspring genotypes.

CHAPTER 3. EXPERIMENTS 57

• nOfElites: elitism is a mechanism to preserve the best genotypes of each
iteration to survive until the next generation, this parameter regulates
how many bests are selected to be maintained, if 0 the elitism mechanism
is disabled.

• nPop: the parameter which regulates the size of each offspring, the
higher it gets, the more ‘near” to best genotype genotypes are evaluated.
An nPop of 0 is not possible.

• nEval: regulates the number of evaluations made in the entire run. An
evaluation is the calculation of a phenotype fitness.

The generation of the offspring for the new iteration starts with the selection
of the elites, the first nOfElites individuals are saved:

elites = state.listPopulation().stream().limit(nOfElites).toList();

Then parents are selected:

parents = state.listPopulation().stream().limit(nOfParents).toList();

Then the parameters means of parents genotypes is calculated:

means =

meanList(parents.stream().map(Individual::genotype).toList());

Finally the offspring is generated, a number of (populationSize−−elites.size())
new individuals are created starting from the mean of parameters of parents.
To slightly change the mean genotype, for each new individual each parameter
is multiplied by a random Gaussian value attenuated by the sigma factor, gen-
erating individuals genetically near to parents. New individuals are merged
with elites before selected, forming the offspring:

offspringGenotypes = IntStream.range(0, populationSize -

elites.size())

.mapToObj(i -> sum(means, buildList(means.size(), () ->

random.nextGaussian() * sigma)))

.toList();

Differential evolution

Differential Evolution(DE) is a population-based optimization algorithm,
the main difference with previous is that it does not use the gradient of the
problem being optimized so it does not require the optimization problem to

58 CHAPTER 3. EXPERIMENTS

be differentiable or continuous2.
DE[1] requires the definition of upper and lower bounds for each parameter,
these 2D values can be collected into two, D-dimensional initialization vec-
tors, bL and bU , respectively lower and upper bounds. Once those bounds are
defined, each parameter is given a random value within his range, for example,
the initial value for the ith parameter can be calculated as:

Xi = rand(0, 1) ∗ (biU − biL) + biL

Once initialized, DE mutates and recombines the population to produce a
population of Np trial vectors. In particular, differential mutation adds a
scaled, randomly sampled, vector difference to a third vector, a mutant vector
Vi can be calculated as:

Vi = X0 + F ∗ (X1 −X2)

Where F ∈ (0, 1+), is a positive real number that controls the rate at which
the population evolves. The base vector X0 can be determined in various
ways (also randomly) and has to be different from target vector Vi. Difference
vectors are randomly selected once per mutant.

Artificial intelligence

A different and innovative approach to the problem of optimizing could
be the choice to use AI algorithms. This section could be infinitely long and
could get off-topic, for this reason and for the sake of the reader, we limit it to
the explanation on how Deep Reinforcement Learning (DRL) could be
used for this experiment.
DRL is an innovative and general purpose AI method to train an agent to
reach his goal, defining a reward function which assign a fitness or reward
to each state of the agent. Formally, DRL [6] is described as a Markov
decision process (MDP), which consists of:

• a set of states S.

• a set of actions A.

• transition dynamics T (st+1|st, at) that map a state-action pair at time t,
onto a distribution of states at time t+ 1.

• a reward function R(st, at, st+1).

2https://en.wikipedia.org/wiki/Differential_evolution

CHAPTER 3. EXPERIMENTS 59

• a discount factor γ ∈ [0, 1], where lower values place more emphasis on
immediate rewards.

In general, a policy, denoted as π, maps states to a probability distribution
over actions, represented as π : S → p(A = a|S). In episodic MDPs, where
the state resets after each episode of length T , a sequence of states, actions,
and rewards within an episode forms a trajectory or rollout of the policy.
Each rollout accumulates rewards from the environment, resulting in a return
defined as R =

∑T−1
t=0 γtrt+1, where γ is the discount factor. The objective

of DRL is to determine an optimal policy, denoted as π∗, that maximizes the
expected return from all states:

π∗ = argmaxπE[R|π]

In our experiments the agent controller should be the same for each voxel, the
state could be the set of data perceived by sensors, actions the voxel actuation,
reward function could not remain the same as the actual fitness, some cautions
should be taken in consideration, to avoid classic problems of DRL.

3.3.3 New tasks

Hole passing over is just one task that self-assembly can overcome, many
use case could benefit from the usage of self-assembly. Keep in mind that self-
assembly should become generic: theoretically and idiomatically the learning
process should not depend on a specific task, but should enable roots to accom-
plish any feasible task they are assigned. A solution to achieve the idiom could
be the merging of different task-trained robots, not physically putting differ-
ent robots with different controllers together, but finding a way to generate a
multitask controller by the mean of union of single task controllers. For this
reason, it is important to continue the exploration of tasks which could take
advantage from self-assembly and try to exploit them. An example follows of
an interesting task to explore and test.

Ladder task

In contradiction to piling up, the ladder task taken from ant behavior[4],
aim to the formation of a ladder starting from the top of an overhanging
bank and adding units at bottom until ground is reached. When the ladder is
formed, remaining units can use it to safely reach the ground3.15. This task
forces in some way units to get assembled and find out how to safely create
the ladder, climbing down each other, and avoid launching themselves down
the hole.

60 CHAPTER 3. EXPERIMENTS

Figure 3.15: Hypothetical frames representing ladder task

To formalize the task, we need to define an environment and a fitness
function. The environment is fairly easy to imagine, we can refer to Figure
3.15 first frame, to understand how the terrain could be formed, and where
voxels should be startlingly placed (represented by red squares). The fitness
could be the mean of the eights of voxels, and the objective to minimize it.
This setup, anyway, would not avoid voxels from simply launching themselves
down the hill, and due to this solution being the simplest and fastest, it surely
would be picked as the best. To prevent this behavior, we could abolish hitting
the ground too heavily by taking away voxels which, at a certain moment, has
a sudden change in velocity (e.g., when they hit the ground after falling from
too high), mathematically with a threshold on the acceleration (derivative
of velocity), if absolute value of acceleration is greater than the predefined
threshold, it means that the voxel was not prudent enough and gets removed.
The voxel could both be physically removed or his controller disabled and his
position not counted for fitness, it could be interesting to see if other voxels
would use ”dead” ones for their profit, or simply ignore them.

Conclusion

This thesis has provided an in-depth exploration of self-assembly in voxel -
based robots, opening new avenues to contribution and research. Through the
study of self-assembly and the final experiment, we have demonstrated the po-
tential of voxel -based units to autonomously organize and assembly, without
the needs of a centralized controller, to achieve complex tasks. The final ex-
periment, featuring homogeneous voxel -based robots in an environment with a
hole, was successfully solved in each of its three configurations, including small,
medium, and large holes, demonstrating the capability of robots to overcome
the obstacle. The remarkable aspect lies in the fact that we never told voxels
the environment contained a hole, how to ensemble, or to ensemble. The only
thing we asked voxels was to maximize their horizontal distance to origin, they
autonomously learned that in the environment there was a hole, and more im-
portant they autonomously decided to ensemble and what form to create to
be able to succeed. The last observation corresponds to fundamental aspects
of self-assembly and prove so its feasibility, underscoring the importance of
further research in this direction.

In conclusion, the research presented in this thesis not only advances our
understanding of self-assembly in voxel -based robots but also contributes a
significant step towards the realization of more autonomous, adaptable, and
intelligent robotic systems. As we move forward, the insights gained from this
study will undoubtedly inform and inspire future research and development in
the field of intelligent robotic systems.

61

Acknowledgements

A huge thanks to supervisor, Prof. Roli, for the contribution in each step
of the thesis.
Another huge thanks to co-supervisor, Prof. Medvet, creator of 2D Robot Evo-
lution, for his continue and always gentle support.
A thanks to co-supervisors, Dott. Braccini and Dott. Baldini, for their con-
tribution in tests and experiments.
A thanks to Prof. Pianini and Dott. Baiardi, system administrators of Cluster
4.0, for their active support in the usage of cluster.
An important thanks to Lucia Sacchetti, the one who always personally sup-
ported me and my studies in the last years.

63

Bibliography

[1] The Differential Evolution Algorithm, pages 37–134. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2005.

[2] The day the earth stood still, 2008.

[3] Big hero 6, 2014.

[4] C. Anderson, G. Theraulaz, and J.-L. Deneubourg. Self-assemblages in
insect societies. Insectes Sociaux, 49(2):99–110, 2002.

[5] M. Anis, S. Pendurkar, Y.K. Yi, and G. Sharon. Comparison between
popular genetic algorithm (ga)-based tool and covariance matrix adapta-
tion, evolutionary strategy (cma-es) for optimizing indoor daylight. 2023.

[6] K. Arulkumaran, M.P. Deisenroth, M. Brundage, and A.A. Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine,
34(6):26–38, 2017.

[7] Z. Beheshti and S.M.H. Shamsuddin. A review of population-based meta-
heuristic algorithms. Int. j. adv. soft comput. appl, 5(1):1–35, 2013.

[8] H.G. Beyer and H.P. Schwefel. Natural Computing, 1(1):3–52, 2002.

[9] J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp, and
T. Nguyen. Programmable parts: a demonstration of the grammatical ap-
proach to self-organization. In 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3684–3691, 2005.

[10] C. Cai and H. Jiang. Performance comparisons of evolutionary algorithms
for walking gait optimization. In 2013 International Conference on Infor-
mation Science and Cloud Computing Companion, pages 129–134, 2013.

[11] M. Dorigo. Swarm-bot: an experiment in swarm robotics. In Proceedings
2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., pages 192–
200, 2005.

65

66 BIBLIOGRAPHY

[12] M. Dorigo and M. Colombetti. Robot shaping: An experiment in behavior
engineering. MIT Press, 1998.

[13] R. Fitch, D. Rus, and M. Vona. A basis for self-repair robots using self-
reconfiguring crystal modules. In Intelligent Autonomous Systems, vol-
ume 6, pages 903–910. Citeseer, 2000.

[14] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss. Self organizing
robots based on cell structures - ckbot. In IEEE International Workshop
on Intelligent Robots, pages 145–150, 1988.

[15] K. Gilpin, K. Kotay, D. Rus, and I. Vasilescu. Miche: Modular shape
formation by self-disassembly. The International Journal of Robotics Re-
search, 27(3-4):345–372, 2008.

[16] R. Gross, M. Bonani, F. Mondada, and M. Dorigo. Autonomous self-
assembly in swarm-bots. IEEE Transactions on Robotics, 22(6):1115–
1130, 2006.

[17] N. Hansen. The cma evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772, 2016.

[18] N. Hansen and A. Auger. Cma-es: evolution strategies and covariance ma-
trix adaptation. In Proceedings of the 13th Annual Conference Companion
on Genetic and Evolutionary Computation, GECCO ’11, page 991–1010,
New York, NY, USA, 2011. Association for Computing Machinery.

[19] E. Klavins. Programmable self-assembly. IEEE Control Systems Maga-
zine, 27(4):43–56, 2007.

[20] K. Lee and G.S. Chirikjian. Robotic self-replication. IEEE Robotics &
Automation Magazine, 14(4), 2007.

[21] H. Li, T. Wang, H. Wei, and C. Meng. Response strategy to environmental
cues for modular robots with self-assembly from swarm to articulated
robots. Journal of Intelligent & Robotic Systems, 81(3):359–376, March 1
2016.

[22] H. Li, H. Wei, J. Xiao, and T. Wang. Co-evolution framework of swarm
self-assembly robots. Neurocomputing, 148:112–121, 2015.

[23] E. Medvet, A. Bartoli, A. De Lorenzo, and G. Fidel. Evolution of dis-
tributed neural controllers for voxel-based soft robots. In Proceedings
of the 2020 Genetic and Evolutionary Computation Conference, GECCO
’20, page 112–120, New York, NY, USA, 2020. Association for Computing
Machinery.

BIBLIOGRAPHY 67

[24] E. Medvet, A. Bartoli, A. De Lorenzo, and S. Seriani. 2D-VSR-Sim:
A simulation tool for the optimization of 2-D voxel-based soft robots.
SoftwareX, 12, 2020.

[25] E. Medvet, A. Bartoli, A. De Lorenzo, and S. Seriani. Design, Validation,
and Case Studies of 2D-VSR-Sim, an Optimization-friendly Simulator of
2-D Voxel-based Soft Robots. arXiv preprint arXiv:2001.08617, 2020.

[26] Eric Medvet, Giorgia Nadizar, and Luca Manzoni. Jgea: a modular java
framework for experimenting with evolutionary computation. In Proceed-
ings of the Genetic and Evolutionary Computation Conference Compan-
ion, GECCO ’22, page 2009–2018, New York, NY, USA, 2022. Association
for Computing Machinery.

[27] R. O’Grady, A.L. Christensen, and M. Dorigo. Self-sssembly and morphol-
ogy control in a swarm-bot. In 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2551–2552, 2007.

[28] R. O’Grady, R. Gross, A.L. Christensen, F. Mondada, M. Bonani, and
M. Dorigo. Performance benefits of self-assembly in a swarm-bot. In 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2381–2387, 2007.

[29] B. Salemi, M. Moll, and W. Shen. Superbot: A deployable, multi-
functional, and modular self-reconfigurable robotic system. In 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3636–3641, 2006.

[30] P. Swissler and M. Rubenstein. Fireantv3: A modular self-reconfigurable
robot toward free-form self-assembly using attach-anywhere continuous
docks. IEEE Robotics and Automation Letters, 8(8):4911–4918, 2023.

[31] W. Tan, H. Wei, and B. Yang. Sambotii: A new self-assembly modular
robot platform based on sambot. Applied Sciences, 8(10), 2018.

[32] K. Tomita, S. Murata, H. Kurokawa, E. Yoshida, and S. Kokaji. Self-
assembly and self-repair method for a distributed mechanical system.
IEEE Transactions on Robotics and Automation, 15(6):1035–1045, 1999.

[33] V. Trianni, S. Nolfi, and M. Dorigo. Cooperative hole avoidance in a
swarm-bot. Robotics and Autonomous Systems, 54(2):97–103, 2006. In-
telligent Autonomous Systems.

68 BIBLIOGRAPHY

[34] R. Wang, P. Luo, Y. Guan, H. Wei, X. Li, J. Zhang, and X. Song.
Timed automata based motion planning for a self-assembly robot sys-
tem. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 5624–5629, 2014.

[35] H. Wei, Y. Chen, J. Tan, and T. Wang. Sambot: A self-assembly modular
robot system. IEEE/ASME Transactions on Mechatronics, 16(4):745–
757, 2011.

[36] H. Wei, D. Li, J. Tan, and T. Wang. The distributed control and ex-
periments of directional self-assembly for modular swarm robots. In 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4169–4174, 2010.

[37] P. White, V. Zykov, J. Bongard, and H. Lipson. Three dimensional
stochastic reconfiguration of modular robots. In Three Dimensional
Stochastic Reconfiguration of Modular Robots, pages 161–168, 06 2005.

[38] G.M. Whitesides and B. Grzybowski. Self-assembly at all scales. Science,
295(5564):2418–2421, 2002.

[39] M. Yim, D.G. Duff, and K.D. Roufas. Polybot: a modular reconfigurable
robot. In Proceedings 2000 ICRA. Millennium Conference. IEEE Inter-
national Conference on Robotics and Automation. Symposia Proceedings
(Cat. No.00CH37065), volume 1, pages 514–520 vol.1, 2000.

[40] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G.S. Chirikjian. Modular self-reconfigurable robot systems [grand
challenges of robotics]. IEEE Robotics & Automation Magazine, 14(1):43–
52, 2007.

[41] M. Yim, Ying Zhang, and D. Duff. Modular robots. IEEE Spectrum,
39(2):30–34, 2002.

